PoS - Proceedings of Science
Volume 380 - Particles and Nuclei International Conference 2021 (PANIC2021) - Neutrino physics
Search for sterile neutrinos in low-energy double-cascade events with the IceCube Neutrino Observatory: a first expected sensitivity
D. Vannerom*, L. Fischer, J. Conrad, S. Blot and C. Arguelles
Full text: pdf
Pre-published on: April 01, 2022
Published on: May 24, 2022
Sterile neutrinos are a well motivated facet of the new physics landscape. From their role in the mechanism through which Standard Model (SM) neutrinos acquire mass, to their potential explanation of anomalies in oscillation experiments and even as Dark Matter candidates, these hypothetical particles are thought to play a central part in the near future of particle physics. Many models of sterile neutrinos exist, in some of which they are allowed to decay to SM particles. If the sterile neutrino production and subsequent decay happens inside the IceCube detector, this would lead to a double-cascade signature similar - but not identical - to the one known from tau neutrino charged current interactions. However, the lifetime of the sterile neutrino is potentially much longer than that of the tau lepton, depending on its mass. This opens the possibility for a spatial resolution of a double cascade topology at atmospheric neutrino energies, as opposed to searches for high energy tau neutrinos from astrophysical sources. We present the results of a first study of the IceCube-DeepCore detector sensitivity to such a signal. The strategy is to study the topology of such double-cascade events in simulation and design a classifier that helps us isolate a sample of signal events over the background from SM processes. We study the sensitivity as a function of the signal parameters to determine in what conditions could IceCube see such a signal. Scanning the two-dimensional tau-sterile mixing parameter and sterile neutrino mass phase-space, we conclude that with the current state of the analysis, this search will have to wait for the IceCube Upgrade or a major improvement in the analysis tools in order for a signal to be isolated from the very large neutrino background.
DOI: https://doi.org/10.22323/1.380.0299
How to cite

Metadata are provided both in "article" format (very similar to INSPIRE) as this helps creating very compact bibliographies which can be beneficial to authors and readers, and in "proceeding" format which is more detailed and complete.

Open Access
Creative Commons LicenseCopyright owned by the author(s) under the term of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.