
P
o
S
(
P
A
N
I
C
2
0
2
1
)
3
7
1

Explicit renormalization of the nucleon-nucleon
interaction in chiral EFT with a finite cutoff.
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Nucleon-nucleon interaction is studied within chiral effective field theory with a finite cutoff at
next-to-leading order in the chiral expansion. The leading order interaction is resummed in a non-
perturbative manner, whereas the next-to-leading-order terms are treated perturbatively. Some
aspects of renormalizability of such a scheme are addressed. In particular, it is analyzedwhether the
power-counting breaking terms originating from the integration regions with momenta of the order
of the cutoff can be absorbed by the renormalization of the low energy constants corresponding to
the leading contact interactions.
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1. Introduction

In recent years, chiral effective field theory (chiral EFT) has been widely used for studying
two-nucleon dynamics, few-nucleon and many-nucleon systems.

One of the most efficient schemes within chiral EFT is the approach suggested by Weinberg
[1, 2]. It consists in applying the chiral power counting to the effective potential and iterating
it non-perturbatively introducing a regulator in the form of a finite cutoff Λ of the order of the
chiral symmetry breaking scale. This approach is phenomenologically quite successful, see, e.g.,
Refs. [3–5] for recent applications and Ref. [6] for a review. From a more fundamental point of
view, there still remain open questions such as explicit renormalizability of this theory.

The issue of the renormalization of the nucleon-nucleon (NN) interaction is subject to hot
debate, see Refs. [7–10] for recent discussions. In Ref. [16], the renormalizability of the NN EFT
with a finite cutoff was analyzed at next-to-leading (NLO) order in the chiral expansion for the
perturbative leading order (LO) interaction summed to an arbitrary order.

In this talk, we report on a further development along this line by considering the non-
perturbative effects.

2. Perturbative renormalization at NLO

Our scheme is based on the chiral effective Lagrangian:

Leff = L
(2)
π + L

(1)
πN + L

(0)
NN + L

(2)
NN + . . . (1)

organized as an expansion in terms of the number of derivatives and the power of the pion mass
Mπ . This corresponds to an expansion of observables in terms of the ratio of the soft and the hard
scale Q = q

Λb
, where the soft scale is given by external on-shell nucleon momenta pon, and Mπ and

the hard chiral symmetry breaking scale Λb can be associated with the ρ-meson mass.
In Weinberg’s approach, the chiral order of potential (2N-irreducible) contributions is given

by the power counting formula

D = 2L +
∑
i

(
di +

ni
2
− 2

)
, (2)

where L is the number of loops, all vertices of the diagram, ni is the number of nucleon lines in
vertex i and di is the number of derivatives and the pion-mass insertions at vertex i. From this
formula, it follows that the LO potential consists of the derivativeless contact interaction and the
one-pion exchange contribution. The NLO potential contains two-pion-exchange contributions and
subleading contact terms. In practice, one can promote certain terms to leading order by numerical
arguments.

2N-reducible graphs are enhanced due to the infrared singularity of the nucleon propagators.
In particular, all iterations of the LO potential V0 have to be taken into account at the same order.
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The LO and NLO amplitudes are given then by the series (in case they converge)

T0 = V0 + V0GV0 + V0GV0GV0 + · · · =

∞∑
n=0

T [n]0 , (3)

T2 = V2 + V2GV0 + V0GV2 + V2GV0GV0 + · · · =

∞∑
m,n=0

T [m,n]2 (4)

These series contain multiple integrals in the momentum space that converge at momenta p ∼ Λ
(without a regulator they would diverge). For the LO amplitude, this means that all terms in Eq. (3)
are of order

(
Λ
Λb

)n
∼ O(Q0), with n = 0, 1, 2 . . . , and the inverse powers of Λb come from the LO

potential. This is consistent with Weinberg power counting. A formal proof of this statement was
given in Ref. [16].

However, for the NLO amplitude, the integration regions with p ∼ Λ produce power counting
breaking terms of order O(Q0) (instead of O(Q2)). We call a theory renormalizable in the sense of
EFT if such terms can be absorbed by a redefinition (renormalization) of the low energy constants
(LECs) of a lower order (in this case, order Q0). In Ref. [16], it was shown that in case the series
in Eq. (4) converges, such a theory is indeed renormalizable under rather general conditions. In
particular, one can construct the renormalized amplitude R(T [m,n]2 ) for each term in Eq. (4), that
satisfies the inequality���R(T [m,n]2 )(pon)

��� ≤ 8π2M1
mNΛb

(
M2
Λ

Λb

)m+n p2
on

Λ2
b

logΛ/Mπ , (5)

whereM1,M2 are some constants of order 1.
The situation when the series in Eq. (4) has to be resummed non-perturbatively is, however,

more complicated.

3. Non-perturbative renormalization at NLO

For the LO amplitude the non-perturbative analysis is similar to the perturbative case. It is
convenient to apply the Fredholm method and represent the LO amplitude as

T0 = V0R = R̄V0 , R =
1

1 − GV0
=

N
D
, R̄ =

1
1 − V0G

=
N̄
D
, (6)

where the minor N and the Fredholm determinant D can be expanded in convergent series in V0:

N =
∞∑
i=0

Ni , D =
∞∑
i=0

Di (7)

which makes it possible to connect the non-perturbative case to the perturbative expansion and
derive the power counting for the LO amplitude. The non-perturbative dynamics is now contained
in the Fredholm determinant, which is a number that depends only on the on-shell momentum
(energy): D = D(pon).

3



P
o
S
(
P
A
N
I
C
2
0
2
1
)
3
7
1

Explicit renormalization of the nucleon-nucleon interaction A. M. Gasparyan

For theNLOamplitude, it is possible to sum the series for the renormalized subtracted quantities
R(T [m,n]2 ) in a closed form:

R (T2) (pon) =
∞∑

m,n=0
R

(
T [m,n]2

)
(pon) = T2(pon) − T2(pon = 0)

[
ψpon(0)
ψpon=0(0)

]2
(8)

where ψpon(0) is the LO scattering wave function at the origin, which corresponds to the subtraction
at pon = 0: R (T2) (pon = 0) = 0. Introducing the quantities Nψ and N2 via

ψpon(0) =
Nψ(pon)
D(pon)

, T2(pon) =
N2(pon)
D(pon)2

(9)

we can rewrite Eq. (8) as

R (T2) (pon) =
1

D(pon)2

[
N2(pon) − N2(0)

Nψ(pon)
Nψ(0)

]
. (10)

Both Nψ and N2 can be represented as convergent series inV0, which allows one to derive the correct
power counting for the NLO amplitude. However, in contrast to the perturbative case, an additional
condition has to be satisfied by the LO potential to guarantee the renormalizability, namely

Nψ(0) , 0 (11)

when V0 is rescaled as V0 → λV0, for any complex |λ | < 1.

4. Summary

We have analyzed the renormalizability of the nucleon-nucleon effective field theory with a
finite cutoff at next-to-leading order paying a particular attention to non-perturbative effects. We
have shown that the next-to-leading amplitude satisfies the expected power counting if one imposes
a certain constraint on the leading order potential.
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