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The factorization of exclusive processes can give access to generalized transverse momentum-
dependent distributions (GTMDs). We consider here the case of the differential cross-section for
the exclusive process 𝜋𝑁 → 𝑁 ′𝛾∗𝛾∗ → 𝑝(ℓ+ℓ−) (ℓ+ℓ−). We provide a factorization theorem for
this process studying the gauge links that are involved and providing an expression of the cross-
section factorized in terms of two GTMDs and two light-cone wave functions. Furthermore, we
show that the soft radiation has a structure very similar to the one found in single parton scattering.
Finally, the cancellation of rapidity divergences is also studied.
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1. Introduction

An important goal within the QCD community is to understand the inner structure of hadrons
and hadronic structures in multiple dimensions. Generalized transverse momentum dependent
distributions (GTMDs) are considered mother distributions of both GPDs and TMDs since they
reduce to them in certain kinematical limits [1]. They give information on the five-dimensional
parton structure and are relevant for understanding the origin of the proton spin.

Figure 1: Exclusive Double Drell-Yan at
leading power

In the present work, we consider an exclusive pro-
cess, namely 𝜋𝑁 → 𝑁 ′𝛾∗𝛾∗ → 𝑁 ′(ℓ+ℓ−) (ℓ+ℓ−) and
show that, thanks to the particular configuration of soft ra-
diation and power ordering, the factorization of its cross-
section using Soft Collinear Effective Theory (SCET)
operators (see e.g. [2]) gives access to GTMDs and light-
cone wave-functions. The choice of the process has been
inspired by the recent work of [3]. To conclude, we have
confirmed the cancelation of rapidity divergences in the
final expression of our process at one-loop.

2. All-order factorization procedure

In order to factorize the cross-section we start by
writing the general expression of the hadronic tensor of
the process shown in Figure (1):

𝑊𝜇𝜈𝛼𝛽 =
∑︁
𝑋

∫
𝑑𝑧1,2,3𝑒

−𝑖𝑞1 ·𝑧1−𝑖𝑞2 ·𝑧2+𝑖𝑞1 ·𝑧3 〈Π𝑁 |𝐽†𝛼,𝑧1𝐽
†
𝛽,𝑧2

|𝑁 ′〉〈𝑁 ′ |𝐽𝜇,𝑧3𝐽𝜈,0 |Π𝑁〉 , (1)

where the two hard scatterings are represented as two quark electromagnetic currents while the
leptons in the final state are included in a leptonic tensor omitted here.

In SCET one can decompose four-vectors in light-like coordinates as 𝑣𝜇 = �̄� ·𝑣 𝑛𝜇

2 +𝑛 ·𝑣 �̄�𝜇

2 +𝑣⊥ =

𝑣+ 𝑛𝜇

2 + 𝑣− �̄�𝜇

2 + 𝑣⊥, with 𝑛 · �̄� = 2. The fields are divided into collinear, anti-collinear and soft fields
based on the scaling of its momenta. With this, one can build SCET operators and match the
corresponding QCD ones onto them. In the case of the quark electromagnetic current we define the
corresponding effective current as:

𝐽𝑎𝑑𝜇 =
∑︁
𝑞

𝑒𝑞𝐶 (𝑄2/𝜇2) �̄�𝑞,𝑑

�̄�
𝑆
†𝑑𝑐
�̄�

𝛾𝜇𝑆
𝑐𝑎
𝑛 𝜒

𝑞,𝑎
𝑛 , (2)

where 𝑎, 𝑐, 𝑑 are color indices. 𝐶 (𝑄2/𝜇2) is the hard function and represents the high-energy
contribution, the collinear and anti-collinear fermion fields are given by 𝜒𝑎

𝑛(�̄�) = 𝑊
†,𝑎𝑎′
𝑛(�̄�) 𝜉

𝑎′

𝑛(�̄�) =

𝑊
†,𝑎𝑎′
𝑛(�̄�) 𝑃+(−)𝜓

𝑎′

𝑛(�̄�) and 𝑊𝑛 and 𝑆𝑛 are soft Wilson lines and represent the soft radiation of gluons.
After matching the four QCD currents to the effective ones we can obtain the factorized

expression of the hadronic part of the cross-section. To this end, we assume that the momentum of
the nucleon has a collinear scale while the momentum of the pion has an anti-collinear one. Taking

2
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into account the scaling of the photon momenta and the scaling of the fields, we do a multipole
expansion to drop the power-suppressed dependence on the field’s momenta. Schematically, the
resulting factorized hadronic tensor is:

𝑊𝜇𝜈𝛼𝛽 ∼𝐻 𝑤𝑁𝑁 ′,𝛼 ⊗ 𝑆1 ⊗ 𝜙𝜋,𝛽 ⊗ 𝑤𝑁 ′𝑁 ,𝜇 ⊗ 𝑆2 ⊗ 𝜙𝜋,𝜈 , (3)

where 𝐻 = |𝐶 |4 is the hard factor, 𝑤𝑁𝑁 ′,𝛼 and 𝑤𝑁 ′𝑁 ,𝜇 have only collinear fields and are two
GTMD correlators [1], 𝑆1 and 𝑆2 are soft functions with four Wilson lines each, and 𝜙𝜋,𝛽 and 𝜙𝜋,𝜈

have only anti-collinear fields and they are light-cone wave functions with two fermion fields each
[4], [5]. This factorization, at leading twist, is valid for all combinations of polarization states.
Furthermore, the obtained soft factors have the same structure as the one of Drell-Yan factorization
[6]. In position space we have:

𝑆(®𝑟⊥) =
1
𝑁𝑐

tr〈0|𝑇{𝑆†𝑛𝑆�̄� (®𝑟⊥)}𝑇{𝑆†�̄�𝑆𝑛 (0)}|0〉 . (4)

Figure 2: Single color loop in the Drell-
Yan Soft Factor

When doing perturbative calculations of each of the ob-
tained functions in the factorization theorem, we integrate
over all momentum space. However, in the collinear and
anti-collinear integrands, doing this would imply integrat-
ing over the soft region as well. To remove the overlap
between regions it is necessary to perform the so-called
zero-bin subtraction which, in summary, implies divid-
ing the correlators of consideration by their associated
soft function. Furthermore, it is also necessary to treat
unwanted rapidity divergences that appear in all perturba-
tive calculations in the soft and collinear limits of QCD.

The subtraction of rapidity divergences of the light-
cone wave functions [7] and the GTMD correlators [8]
need to be done by properly combining them with the relevant soft factors. It turns out that, since
the collinear and anti-collinear functions have the same number of fields, both of them have the
same procedure to remove the overlap with the soft region and absorb rapidity divergences. One
can define GTMD and light-cone wave function correlators without rapidity divergences and in
coordinate space as:

𝑊𝑁 ‘𝑁 = 𝑤𝑁 ‘𝑁 𝑆1/2 =
𝑤𝑢𝑛𝑠𝑢𝑏

𝑁 ‘𝑁
𝑆

𝑆1/2 Φ𝜋 = 𝜙𝜋 𝑆1/2 =
𝜙𝑢𝑛𝑠𝑢𝑏𝜋

𝑆
𝑆1/2 , (5)

where 𝑤𝑁𝑁 ′ and 𝜙𝜋 have included the zero-bin subtraction.
Finally, one should also contract the color indices to form color singlets in all the matrix elements.
As a consequence, the soft factor of consideration is connected into a single Wilson color loop as
shown in Figure (2). In general, multi-parton scatterings in inclusive processes are factorized into
functions with a larger number of fields and the color structures will be more complex.

By including the square-roots of the soft factors within the definition of the collinear and
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anti-collinear functions one obtains a factorized cross-section without the soft factor:

𝑊𝛼𝛽𝜇𝜈 ∼ 𝐻 𝑊𝑁𝑁 ′,𝛼 ⊗ Φ𝜋,𝛽 ⊗𝑊𝑁 ′𝑁 ,𝜇 ⊗ Φ𝜋,𝜈 . (6)

In our future work, we detail this procedure and elaborate on the evolution kernels of the distributions
that appear in the factorization theorem [9].

3. Conclusion

The present study shows that a factorized cross-section sensitive to the GTMD is also dependent
on the product of two soft factors appearing in single parton scattering processes. The factorization
theorem depends on several non-perturbative functions. The subtraction of rapidity divergences in
the collinear and anti-collinear functions gives rise to an expression without soft radiation factor.

Acknowledgments: The authors are supported by the Spanish Ministry grant PID2019-
106080GB-C21 and by the European Union Horizon2020 research and innovation program under
grant agreement Num. 824093 (STRONG-2020).
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