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First-principle based simulations are a fundamental building block of LHC physics. In the
coming LHC runs, simulations will face unprecedented precision requirements, challenging the
efficiency of Monte Carlo generators. With applications ranging from modular improvements to
new frameworks, generative networks can help overcome these challenges.
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1. Introduction

High energy particle physics owes much of its success to the impressive interplay between
theory and experimental physics, which has lead to first-principle based precision simulations.
With the upcoming LHC Run III, and even more so for the HL-LHC, the natural limitations of
computing resources pose a serious challenge to standard precision predictions. Among the main
challenges are the high-dimensional phase space and intrinsic complex structures which lead to
inefficient mapping of the phase space and consequently low unweighting efficiencies. In an era of
data, machine learning techniques offer promising possibilities to boost the performance in order
to achieve the necessary precision.

This can for instance be achieved by speeding up individual modules of the simulations via
regression models that estimate amplitudes [5, 6], new phase space integration methods [7–9] or
normalizing flow networks which improve standard phase space sampling [10–12]. More generally
we can use generative networks to directly generate events [1, 2, 13–18]. The main advantages
of generative networks include their short evaluation time and the possibility to train on simulated
as well as real data. Moreover they can be used to invert a Markov Chain process, making them
particularly suitable for unfolding problems [3, 19].

2. GAN training

While there are several generative networks on the market, we focus on generative adversarial
networks (GANs) [20], a special type of generative networks, that is particularly well suited
to generate realistic samples. A GAN consists of two networks, a generator G which transforms
randomnoise into generated events {xG} and a discriminator network D, that is trained to distinguish
generated events from true events xT . Both networks are trained by minimizing their corresponding
loss functions

LD =
〈
− log D(xT )

〉
xT∼PT

+
〈
− log(1 − D(xG))

〉
xG∼PG

(1)

LG =
〈
− log D(xG)

〉
xG∼PG

. (2)

Once the training has converged, the generated samples follow the same underlying distribution
as the true events. The stability of the training is crucial and can be improved via a variety of
techniques like modified loss functions or gradient penalty.

3. Event generation

We illustrate the strengths andweaknesses of GANs using the example of tt̄ production followed
by a hadronic decay [1]. Assuming that final state particles are on-shell, the resulting phase space
is 18 dimensional as long as we do not impose momentum conservation. Fig. 1 illustrates that
smooth distributions like the pT of the intermediate top quark can easily be learned, while the GAN
struggles with sharper phase space features like the invariant mass of the intermediateW boson. An
additional kernel loss, based on the maximum mean discrepancy of the invariant mass, can support
the training of the generator, leading to a resolved mass peak. Special attention has to be applied to
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Figure 1: Distributions of the transverse momentum of the top quark (left) and the invariant mass of the W
boson (right).

regions with low statistics. The relative lack of information in these regions can lead to significantly
enhanced systematic uncertainties, as we can observe in the tail of the pT distribution.

Finally we can analyze the correlations between generated observables. In Fig. 2 we show
the learned correlation between the transverse momentum of the top and the bottom quark. A
quantitative comparison between generated and true distribution can be achieved by slicing the
parameter space and comparing the distribution of pT ,b for fixed values of pT ,t . The right panel
of Fig. 2 shows the slice with pT ,t ≈ 100 GeV for which we find an excellent agreement between
generated and true distribution.

Instead of only reproducing existing distributions, we can extend the GAN setup to take into
account two distributions of the same dimensionality and generate their high-dimensional difference
in a consistent way [2]. This allows us to include negative events into our framework. In Fig. 3
we consider the process pp→ e+e− for which we can subtract the continuous photon background
from the Z pole and the interference term. We can see how the distribution of the generated events
reproduces the distribution of the training data (blue, red) as well as their difference (black). Due
to the interpolation properties of the neural network, the distribution of generated events smoothly
interpolates through the statistical fluctuation of the bin-wise difference.
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Figure 2: Generated correlation between the transverse momentum of the top and bottom quarks. The right
hand side compares generated and true distribution for slice of the dataset with pt ,T = 100 GeV.

3



P
o
S
(
L
H
C
P
2
0
2
0
)
0
5
5

Generative Models in Event Simulation Anja Butter

Figure 3: Difference of two distributions obtained from a bin-wise subtraction (dotted) and the subtraction-
GAN (line). The distributions given by the training data are indicated in blue and red while the generated
difference is highlighted in black.

4. Unfolding

While a standard GAN can learn a mapping between the parton and detector level distribution,
it is not guaranteed that the resulting mapping correlates phase space regions on parton and detector
level in a reasonable way. We therefore use a conditional GAN, where generator and discriminator
are conditioned on the detector level information [3]. The resulting fully conditional GAN (FCGAN)
can consistently unfold detector level distributions, so that phase space regions at the level of detector
observables get mapped to corresponding regions of the parton level phase space. This is shown in
the left panel of Fig. 4 for the process pp → ZW± → (l+l−)( j j), where we cut on the transverse
momentum of the leading and the second leading jet. We can test the stability of the FCGAN
by unfolding a new dataset, which follows a different underlying structure, but can be represented
in terms of the same detector level observables. It is essential to analyze how the bias of the
unfolding procedure, introduced through the training of the network, affects signs of new physics.
When inserting data points with a W ′ resonance into the test data, we find that the position of
the resonance is unfolded correctly, while the width has been slightly smeared out. While the
FCGAN demonstrates a reliable performance, a statistically more sound approach can be achieved
via conditional invertible networks [4].
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Figure 4: Parton level truth and FCGANned distributions when we train the GAN on the full data set but
unfold only selected parts of phase space (left) or a new dataset including a W ′ resonance (right).
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