The LHC-forward (LHCf) experiment has measured the very forward neutral particle production cross section in proton-proton and proton-lead collisions at the LHC up to √s = 13 TeV and √sNN = 8.16 TeV, respectively. The experiment employs two independent detectors placed on opposite sides along the beam line approximately 140 meters away from the interaction point of the ATLAS experiment (IP1). The detectors are able to measure neutral particles with pseudorapidity greater than 8.4, up to zero-degree. These measurements are extremely useful for the calibration of the hadronic interaction models used to simulate the atmospheric showers of secondary particles induced from an high energy cosmic ray. Decreasing the uncertainty between different models it is possible to improve the precision of the high energy cosmic rays measurements.
In this contribution the LHCf physics motivation for the Run III of LHC are discussed. The beam parameters and the expected operation time needed for our minimum physics program are described for both p-p run at 14 TeV and p-O run at 9.9 TeV. Finally, a brief summary of the ongoing upgrade on the Arm2 detector is given.