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1. Introduction
The Higgs scalar sector plays a key role in the standard model of particle physics (SM) as

it provides a mechanism for the electroweak symmetry breaking (EWSB) and the generation of
the mass of vector bosons and fermions. The existence of this sector was proven by the Higgs
boson (H) discovery in 2012 by the ATLAS [1] and CMS [2] experiments at the Large Hadron
Collider (LHC) [3–5]. Since then, a successful experimental program hasmeasured theHiggs boson
properties and its couplings to vector bosons and some fermions [6, 7]. However, the shape of the
Higgs energy potential, which determines the Higgs boson self-coupling (λ), remains unmeasured
at the LHC. Thus, a measurement of λ is a crucial test of the SM consistency.

In the SM, non-resonant (NR) Higgs boson pair (HH) production gives direct access to λ. In
proton-proton (pp) collisions, the dominant production mode is the gluon fusion (ggF) with a cross
section at

√
s = 13 TeV of σSM

ggF(pp→ HH) = 31.05 fb evaluated at next-to-next-to-leading order
(NNLO) of the perturbative calculation in quantum chromodynamics (QCD) with the resummation
at next-to-next-to-leading-logarithm (NNLL) including next-to-leading order (NLO) top quarkmass
effects [8]. The secondary production mode is the vector boson fusion (VBF) with a cross section
at
√

s = 13 TeV of σSM
VBF(pp→ HHjj) = 1.73 fb evaluated at next-to-next-to-next-to-leading order

(N3LO) in QCD [9]. The VBF mode gives a unique access to the coupling between a vector boson
pair and a Higgs boson pair (VVHH).

Further theoretical considerations (e.g. the hierarchy problem) and experimental observations
(e.g. dark matter) suggest the existence of physics beyond the standard model (BSM). BSM
models [10–12] that address the shortcomings of the SM predict new spin-0 (XS) and spin-2 (XG)
resonances decaying with a sizeable branching fraction (B) to a HH pair. Depending on the model,
the mass of the new resonance may vary from 250 GeV to a few TeV. Moreover, the effects of the
new states via quantum loops or modification of SMHiggs couplings can induce an enhancement in
the NR cross section. The modifiers κλ and κ2V quantify the strength of the λ and VVHH couplings
with respect to the SM expectation.

This proceeding focuses on the current challenges and strategy towards the experimental quest
for HH production at the LHC Run-2 period using a dataset of

√
s = 13 TeV pp collisions with

an integrated luminosity (LINT) up to ∼ 140 fb−1. Finally, it summarizes the most sensitive direct
searches performed by ATLAS and CMS so far.

2. HH experimental quest at the LHC
There is a rich variety of final states to investigate HH depending on the way in which each

Higgs boson decays. The current exploration relies largely on the H → bb decay due to the large
B(H→ bb) ∼ 58%, otherwise it becomes statistically limited. Thus far the HH decay channels
studied at the LHC are the following: bbbb [13–16], bbγγ [17, 18], bbτ+τ− [19–22], bbVV where
V is a W or Z boson [23–28], W+W−W+W− [29] and γγW+W− [30].

The HH signal is reconstructed from objects such as b-quark jets (b), light quark- and gluon-jets
(j), tau leptons (τ), muons and electrons (`), photons (γ), and missing transverse energy (MET)
from neutrinos (ν). One crucial challenge is the reconstruction of the H→ bb decay, which can be
accomplished via two small-radius jets or one large-radius jet depending on the H Lorentz boost. Jet
flavour identification is carried out by single-b and double-b taggers based onmachine learning (ML)
discriminants [31–34]. In addition, an ML-based b-jet energy regression accounts for the energy
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mismeasurement caused by neutrinos produced inside the jet or out-of-cone energy leakage [35].
Another key aspect is the reconstruction of the H→ γγ decay. Although the B(H→ γγ) ∼ 0.2%,
this decay is reconstructed with ∼ 1% mass resolution.

The current Run-2 analysis strategy uses dedicated techniques such as event categorizations
and signal extraction using ML-based discriminants (e.g. boosted decision trees (BDT) and deep
neural networks (DNN)). The bbbb final state benefits from B(HH → bbbb) ∼ 34%, but suffers
from a large amount of QCD multijet background which is modeled using data-driven methods. It
is the most sensitive for signals at high mHH values. The bbτ+τ− channel is studied in the final
states where at least one τ decays hadronically. It is characterized by medium branching fraction
and moderate amount of background from top, Z/γ*+jets and multijet events. The best channel
for low mHH studies is bbγγ. Although B(HH → bbγγ) ∼ 0.3%, it has a very small background
(γγ+j’s and H+j’s) and excellent mass resolution. In addition, the bbVV holds a good branching
fraction but a large top background, and is investigated in VV decays involving j’s, `’s and MET.
The W+W−W+W− channel is explored in multilepton categories. Lastly, the γγW+W− channel is
studied inWW decays with 2j + ` +MET final states. Table 1 summarizes the LHC Run-2 analyses.

HH channel Final state and Reference Signature mS/G [TeV] Observable

ATLAS

bbbb [13]? NR [XS/G] [0.26–3.00] mHH [mHH]
bbγγ [17]? NR [ XS ] [0.26–1.00] mγγ [mHH]

bb(τ+τ−,VV)
ττ → τhad(τhad, τ̀ ) [19]? NR [XS/G] [0.26–1.00] BDT [BDT]
WW→ `ν2 j [27]? NR [XS/G] [0.50–3.00] c.e. [mHH]
WW,ZZ,ττ → `ν`ν [28]† NR - DNN

γγW+W− WW→ `ν2 j [30]? NR [ XS ] [0.26–0.50] mγγ [mγγ]
W+W−W+W− `ν`ν (`ν`ν, `ν2 j, 4 j) [29]? NR [ XS ] [0.26–0.50] c.e. [c.e.]

CMS

bbbb [14–16]? NR [XS/G] [0.26–3.00] BDT [mHH,mHH,red]
bbγγ [18]? NR [XS/G] [0.26–0.90] mγγ ⊗ mHH
bbτ+τ− ττ → τhad(τhad, τ̀ ) [21]?[22] NR [XS/G] [0.25–3.00] mT2 [mHH]

bb(VV)
WW/ZZ→ `ν`ν [23]? NR [XS/G] [0.25–0.90] DNN [DNN]
WW→ `ν2 j [25] NR [XS/G] [0.80–3.50] [mbb ⊗ mHH]
ZZ→ 2`(2 j, 2ν) [24] [XS/G] [0.26–1.00] [BDT,mT

HH]

Table 1: Summary of the ATLAS and CMS searches at the LHC Run-2. The studied signatures are non-
resonant (NR), and spin-0 (XS) and spin-2 (XG) resonant within the mass range mS/G. † indicates full Run-2
data. ? indicates participation in the partial Run-2 data combination. “c.e.” stands for counting experiment.
Note: The full Run-2 results in [20] and [26] are not included here because they were not shown in the talk.

3. Best results with LHC Run-2 data
The most comprehensive and sensitive study of HH production via gluon fusion is carried out

by the statistical combination of searches in multiple final states performed by ATLAS and CMS
using partial Run-2 data, corresponding to LINT equal to 27.1–36.1 fb−1 [36] and 35.9 fb−1 [37],
respectively. The combined non-resonant and resonant results are summarized as follows.

The sensitivity to search for non-resonant HH production is driven by the bbbb, bbγγ and
bbτ+τ− final states. The study of the κλ modifier is obtained by combining information from direct
searches marked with a star (?) in Table 1. No statistically significant excess of non-resonant signal
events is found across the κλ range. For the SM case (κλ = 1), upper limits at 95% confidence level
(CL) on the signal strength of HH production with respect to the SM expectation correspond to 6.9

3



P
o
S
(
L
H
C
P
2
0
2
0
)
1
3
2

Recent results on HH production from ATLAS and CMS Daniel Guerrero

(10.0) in ATLAS and 22.5 (12.8) in CMS. The 95% CL observed (expected) allowed interval for the
self-coupling modifier is −5.0 < κλ < 12.0 (−5.8 < κλ < 12.0) in ATLAS, and −11.8 < κλ < 18.8
(−7.1 < κλ < 13.6) in CMS.

Both ATLAS and CMS searched for new resonances with spin-0 and spin-2 hypotheses in
the range of masses from 250 GeV to 3 TeV using multiple final states. The ATLAS and CMS
combined results determined that no statistically significant excess of resonant events is observed,
and therefore 95% CL upper limits on the production cross section of the new resonances decaying
into pairs of Higgs bosons were provided. As an example, the spin-0 combined result in CMS is
presented in Figure 1 (left). In addition, the ATLAS combined result included the interpretation of
the upper limits as constraints on the parameter space of several BSM models.

The first search for non-resonant and spin-0 resonant production via vector boson fusion is
carried out in the bbbb final state by ATLAS using the full Run-2 dataset [38]. No statistically
significant excess of non-resonant and resonant signal events is found across the κ2V parameter
range and the mass range 260–1000 GeV, respectively. The non-resonant SM study (κ2V = 1)
yields an observed (expected) limit on the signal strength of HH production via the VBF mode at
950 (550) times the SMprediction. Moreover, as illustrated in Figure 1 (right), the 95%CL observed
(expected) allowed interval for the κ2V modifier is −0.76 < κ2V < 2.90 (−0.91 < κ2V < 3.11).
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Figure 1: Observed (expected) upper limits at 95% confidence level. Left: Production cross section of a
spin-0 resonance decaying to HH as a function of the resonance mass [37]. Right: The non-resonant VBF
HH production cross section as function of the κ2V modifier [38].

4. Summary
The exploration of the HH production can shed light on the actual structure of the Higgs

boson potential by enabling the study of the Higgs boson self-interaction, and thus giving us a
better understanding of the EWSB mechanism. Moreover, it is a unique opportunity to look at
new corners of the phase space for new physics in the scalar sector. The study of this signature is
stepping up at the LHC and currently involves multiple final states. The development of powerful
analysis methods (e.g. ML-based discriminants) are vital to search for this elusive process. Thus
far, the current direct searches that explore the ggF and VBF production mechanisms with partial
and full Run-2 data do not observe new resonances and anomalous couplings. Hence, upper limits
are set on their production cross sections. Moreover, the sensitivity to the SM ggF production cross
section is approaching around 10 times the SM prediction. Exciting times are ahead as new full
Run-2 results are coming soon and only ∼ 5% of the potential (HL)LHC dataset has been analyzed.
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