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In order to achieve the highest levels of precision at the Large Hadron Collider, a detailed under-
standing of the strong interaction is required. Three recent measurements made by the ATLAS
collaboration in

√
s = 13 TeV pp collisions are reported, which are sensitive to different aspects

of perturbative and non-perturbative quantum chromodynamics. These results include a measure-
ment of hadronic event shapes inmultijet final states with largemomentum transfer, a measurement
of jet substructure quantities with jets groomed using the Soft Drop algorithm, and a measure-
ment of the Lund jet plane using charged particle tracks inside of jets. These measurements are
corrected for acceptance and detector effects, and are compared to state-of-the-art Monte Carlo
models and analytical calculations. The measured data have been made publicly available for use
in future studies.
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1. Introduction

In order to achieve the highest levels of precision at the Large Hadron Collider, a detailed under-
standing of the strong interaction is required. Three recent measurements made by the ATLAS
collaboration [1] in

√
s = 13 TeV proton–proton collisions are reported, which are sensitive to

different aspects of perturbative and non-perturbative quantum chromodynamics. These measure-
ments are corrected for acceptance and detector effects, and are compared to state-of-the-art Monte
Carlo (MC) models [2] and available analytical calculations.

2. Measurement of hadronic event shapes in multijet final states

Event shapes are a family of observables that are used to characterise the flow of energy in collider
events. Measurements of event shapes have been used to probe fundamental properties of QCD [3–
9], to tuneMCmodels [10] and to search for physics beyond the StandardModel (SM) [11]. ATLAS
has performed new measurements of several event shape observables [12, 13], revisiting this topic
for the first time since early in Run 1.

The event shapes measured include the transverse thrust T⊥ and its minor component Tm [14,
15]; the aplanarity A and sphericity S, including the transverse sphericity projection S⊥ [16, 17];
and the C and D event shapes, which respectively vanish for two-jet and planar events. The large
Run 2 dataset [18], advances in jet reconstruction performance [19] and MC models [2] allow these
measurements to be binned in the jet multiplicity and the sum of the leading and subleading jet pT.
The measurements are normalised to the inclusive cross section of events with at least two jets.

The achieved precision tends to be limited at low jet multiplicity by differences in predictions
from the various MC models studied in the context of the unfolding procedure (e.g. Figure 1(a)),
and at high jet multiplicity by the jet energy scale (e.g. Figure 1(b)). The dominant component
of the latter uncertainty is due to differences in the modelling of the gluon-jet response between
Pythia 8 and Herwig++. The precision of the measurements depends on the fiducial region, but
generally ranges between 1%–10%. Several MC models are compared to the measured data. The
simulation describes the main features of the measurements, but agreement degrades in regions
with large non-perturbative effects and in events with high jet multiplicity.

3. Measurement of soft-drop jet observables

Jet substructure (JSS) presents new opportunities to learn about the strong interaction at high energy
scales. Of particular interest in this context is the substructure of jets which have been groomed
with the soft-drop (SD) algorithm [20, 21], which removes soft- and wide-angled radiation in a
way that allows the groomed JSS distributions to be precisely described analytically. ATLAS has
published a measurement of several JSS observables which characterise the hard splitting within a
jet following SD grooming [22, 23], expanding on a prior measurement of the SD jet mass [24].

The SDalgorithmproceeds by reclustering the constituents of a jet using theCambridge-Aachen
(C/A) jet clustering algorithm [25, 26], then iterating through the angularly-ordered clustering
history starting from the widest-angled splitting. At each step, the splitting between subjets j1 and
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j2, respectively the harder and softer branches of the clustering, is subjected to the SD condition:

min
(
pj1
T , pj2

T

)
pj1
T + pj2

T

> zcut

(
∆R( j1, j2)

R

)β
, (1)

where R is the ungroomed jet radius (here, R = 0.8), and zcut and β are parameters which control
how much radiation is removed. If the splitting fails this condition, the softer subjet j2 is discarded
and grooming proceeds using j1. If the inequality is satisfied, then the SD procedure terminates.
In this measurement, dijet events with a leading jet pT > 300 GeV are selected. The SD parameter
zcut is fixed at 0.1, and values of β ∈ {0, 1, 2} are studied.

The properties of the hard splitting that stops the grooming procedure are studied, measuring
the groomed jet mass m, the pT balance of the two primary subjets zg = j2/ j1 and their opening
angle, rg = ∆R ( j1, j2). These quantities are measured using calorimeter- and inner-detector based
signals. The measured distributions are decomposed into quark- and gluon-like components using
information from simulation. The inner-detector based measurements are more precise overall, but
omit the neutral component of jet fragmentation. The calorimeter-based measurements contain
information about all particles, and so these m and rg measurements may be compared to several
cutting-edge analytical predictions [27–33]. Good agreement between the experimental data and
these predictions is observed in regions where resummation effects are largest (ΛQCD/pT ≤ m/pT <
zcut). The accuracy of the descriptions deteriorates particularly as non-perturbative effects become
more relevant. The overall precision is generally limited due to differences in the results obtained
by unfolding with different MC models (Figure 1(c)).

4. Measurement of the Lund jet plane using charged particles

Rather than studying only the hardest perturbative splitting within a jet’s formation, a recent phe-
nomenological proposal [34] suggests an approach based on the framework of Lund diagrams [35]
which can probe the entire jet clustering history. ATLAS has published a measurement of the Lund
jet plane (LJP) [36, 37], using an inclusive sample of high-pT jets in 139 fb−1 of Run 2 pp collision
data. Lund diagrams for individual R = 0.4 jets are constructed by reclustering a jet’s charged
constituents with the C/A algorithm. The resultant angularly-ordered clustering sequence is then
iteratively declustered; at each step, the relative momentum fraction (z) and angle (∆R) of the softer
branch are taken as proxies for the kinematics of emissions from the hard-scatter parton. Dijet
events with R = 0.4 jet pT > 675 GeV are selected in this measurement.

The LJP is the two-dimensional space spanned by ln(1/z) vs. ln(R/∆R). Different physical
effects factorise naturally in this space. This factorisation allows a single measurement to probe
JSS in a way which is simultaneously sensitive to e.g. different parton shower and hadronisation
models, but also isolates sensitivity to each process within expected regions of the LJP distribution.
The precision of this measurement is typically ∼ O(10%), limited by differences in the final result
observed when unfolding the data using different MC models (Figure 1(d)). The measured data
tend to disagree significantly with the predictions of several state-of-the-art MC models, indicating
that this measurement could be a useful resource for future non-perturbative model-building and
parton shower MC tuning efforts. Recently, an analytical prediction of the primary LJP density
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has been published [38], which agrees well with this measurement in regions of the LJP where
non-perturbative effects are small.
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Figure 1: Selected figures from (a,b) Reference [12], (c) Reference [22] and (d) Reference [36]. In each case,
the precision of these analyses is limited by differences betweenMCmodels. In cases where the experimental
uncertainty due to the jet energy scale is large, the most relevant subcomponent of the uncertainty in these
measurements is related to differences in themodelling of gluon jets between various standardMC generators.

5. Concluding remarks

ATLAS has a vibrant jet physics programme studying the dynamics of the strong interaction using
both traditional differential cross-section measurements and cutting-edge JSS techniques. In each
measurement presented here, and as highlighted in Figure 1, the precision is limited in at least some
portion of the fiducial space by disagreements between MC models. The measured data have been
made publicly available for use in future studies [23, 37], in order to help facilitate the maximum
possible precision of future physics analyses performed at the LHC.
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