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The evaluation of a maxcut amplitude by the direct integration of the loop momenta gives in
general a vanishing result, as the δ functions impose overconstrained restrictions to the integration
region. It is proposed to relax the constraints, so that a non vanishing result for the maxcuts can
be obtained, by giving Minkoskian (rather than Euclidean) metric to the components not spanned
by the physical momenta, including the regularising components of the continuous regularisation
scheme. As an example, the one and two loop Bhabha box amplitudes are considered.
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Maximal cuts and Wick Rotations Ettore Remiddi

1. The maxcut amplitudes

If a Feynman propagator is written as

−i
D − iε

= P

(
−i
D

)
+ π δ(D) ,

the corresponding cut propagator is
δ(D) ;

if a propagator is squared
−i

(D − iε)2
= −

d
dD

(
−i

D − iε

)
,

the corresponding cut squared propagator is

−δ′(D) = −
d

dD
δ(D) ,

and so on for higher powers and derivatives.
Given any Feynman graph amplitude the corresponding maximally cut amplitude (or maxcut am-
plitude, or even maxcut for short) is obtained by replacing all the propagators of the amplitude by
the corresponding cut propagators defined by the above rules.
If a Feynman amplitude satisfies an integration by part (or ibp) identity, the corresponding maxcut
identity satisfies the same identity, with all the propagators replaced by the corresponding cut prop-
agators.
An important remark is however in order: if the obvious simplification

D
−i

D − iε
= −i ,

applies to a term occurring in the ibp Feynman amplitude with the first power of −i/(D − iε) only
(i.e. with a simple propagator, not a squared one), the simplification generates a term without the
considered propagator (usually called an inhomogeneous term) in the identity. In the corresponding
identity for the maxcut amplitude the simplification reads

D δ(D) = 0 ,

so that the corresponding inhomogeneous term is missing. Note for completeness that if a term with
a squared denominator appears in the Feynman amplitude and the (homogeneous) simplifications

D
−i

(D − iε)2
=
−i

D − iε

occurs, the corresponding simplification in the cut amplitude reads

D (−δ′(D)) = δ(D) ,

so that the simplified (homogeneous) term is present also in the maxcut amplitude.
The differential equations for the Master Integrals of the Feynman amplitude, which follow at once
from the inhomogeneous ibp identities, are inhomogeneous as well, and are usually solved (Euler’s
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method) by trying to solve the corresponding homogeneous equations as a first step.
From the ibp identities for the maxcut amplitudes one can also obtain at once the differential
equations for the maxcut Master Integrals; those equations are obviously homogeneous given the
absence of inhomogeneous terms in the ibp identities for the maxcut amplitudes, and are exactly
the homogeneous part of the inhomogeneous system obtained for the Feynman amplitudes.
As a result, the maxcut amplitudes are solutions of the homogeneous equations valid for the
Feynman amplitudes, so that the direct evaluation of maxcut amplitudes (surely simpler than the
direct evaluation of the corresponding Feynman amplitudes) provides with a powerful tool for the
solution of the differential equations.
In particularly simple cases (including however also the non trivial massive sunrise graph) the
maxcut amplitudes are strictly related to the unitarity cuts, whose direct evaluation was indeed
used for obtaining the solutions of the homogeneous part of the differential equations. But in more
general cases, the direct evaluation of the maxcut amplitudes as an integral on the components of
the loop momentum gives a vanishing result, as it involves too many δ-function constraints for too
few integration variables and does not provide information on the solution of the homogeneous
equations (which admit always a vanishing solution).
In the next paragraphs after a short discussion of the problem, we show that a Wick rotation of some
loop momenta can give non vanishing and usful results.

2. The 1-loop Bhabha box

As an example, consider the 1-loop Bhabha box

p2

p1

p4

p3

k

Figure 1: The 1-loop Bhabha box.

The kinematics of the process is p1 + p2 → p3 + p4 , with

p2
1 = p2

2 = p2
3 = p2

4 = −m2 ,

p1 = (E, p, 0, 0) ,
p2 = (E,−p, 0, 0) ,
p3 = (E, px, py, 0) .
s = −(p1 + p2)

2 = 4E2 = 4(p2 + m2) ,

t = −(p1 − p3)
2 = −2p(p − px) ,

s + t − 4m2 = 2p(p + px) ,

and the maxcut, in the (usual) d-continuous dimensions, can be written as

B(s, t) =
∫
Ddk δ(D1) δ(D2) δ(D3) δ(D4) , (2.1)
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(the overall normalization is irrelevant when looking for solutions of homogeneous equations), with
the loop momentum k of components k0, kx, ky and ®K , where the (Euclidean) vector ®K has (d − 3)
regularising components, not coupled to the four external physical vectors pi. By using spherical
coordinates for ®K one can write

Ddk = dk0 dkx dky d ®K

= dk0 dkx dky Ω(d − 3) K (d−4)dK , (2.2)

where Ω(n) = 2π n
2 /Γ

(
n
2
)
is the usual solid angle in n dimensions, and

D1 = k2 ,

D2 = (p1 + k)2 + m2 = +2p1k + k2 ,

D3 = (p2 − k)2 + m2 = −2p2k + k2 ,

D4 = (p1 − p3 + k)2 = −t + 2p1k − 2p3k + k2 . (2.3)

Due to Eq.(2.2), Eq.(2.1) is a (rather simple) integral on four integration variables k0, kx, ky and K
of the product of four δ functions.
Quite in general ( for i , j !) one has

δ(Di) δ(Dj) = δ(Di) δ(Dj + aDi) ,

where a is any real quantity; as an example, with the above Di one can write

δ(D1) δ(D2) = δ(D1) δ(D2 − D1) = δ(D1) δ(2p1k) = δ(D1) δ(D′2) , (2.4)

which amounts to the replacement δ(D2) → δ(D′2), with D′2 = D2 − D1 = 2p1k .
By repeated use of the replacements allowed by Eq.(2.4), one arrives at

B(s, t) =
∫

dk0 dkx dky Ω(d − 3)
∫ ∞

0
Kd−4 dK δ(D′1) δ(D

′
2) δ(D

′
3) δ(D

′
4) ,

where the new arguments of the δ’s, written in terms of the integration variables, are

D′1 = k2
y + K2 ,

D′2 = 4pkx ,

D′3 = 2Ek0 ,

D′4 = −t − 2pyky . (2.5)

It is apparent that D′1 cannot vanish, so that δ(D
′
1) = 0 and therefore

B(s, t) = 0 ;

B(s, t) = 0 is indeed a solution of the homogeneous equation for theBhabha amplitude, but obviously
of no interest.
To get a non trivial result, one can give a Minkowski metric to the (d − 3) regularising components
of Ddk. That is immediately achieved by a Wick rotation (or perhaps counter-rotation), which
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gives an overall factor (−i)(d−3) (irrelevant for the maxcut, as the maxcut is required to satisfy a
homogeneous equation). As already observed, those regularising components do not mix with the
physical external vectors (and therefore the Wick rotation, when the factors i are included, does not
change the value of the original Feynman amplitude); the only effect of the change of the metric is
to modify D′1:

D′1 = k2
y + K2 → D′1 = k2

y − K2 .

The integrations are now trivial and the result is

B(s, t) =
1
4
Ω(d − 3)

[
−t(s − 4m2)

4(s + t − 4m2)

] d−4
2

(
−

1
t
√

s(s − 4m2)

)
, (2.6)

which is positive, as expected (t is spacelike and therefore negative).
A short comment might be appropriate here. As already recalled, any propagator can be written as

−i
D − iε

= P

(
−i
D

)
+ π δ(D) ;

when that is done, the product of the the 4 propagators of the 1-loop Bhabha box, Fig.(1), becomes
the sum of 16 terms, the product of the 4 δ’s being just one of those 16 terms.
The amplitude, which is the sum of the 16 teerms, does not change, apart from the overall factor
(−i)(d−3), if the (d − 3) regularising dimensions are properly Wick-rotated, but the values of the
single terms can change (and do change). In particular, the product of the 4 δ’s vanishes with
the usual Euclidean regularisation but gives the above non vanishing result when the Minkowskian
regularising variables are used.

3. The 2-loop Bhabha double box

Let us consider now the scalar 2-loop Bhabha double box amplitude of Fig(2), where the
orizontal lines from p1 to p3 and from p2 to p4 are the massive electron lines, while the vertical
lines are the massless photon propagators.

p2

p1

p4

p3

k1 k2 − k1

p1 + k1 p1 + k2

p2 − k1 p2 − k2

Figure 2: The 2-loop Bhabha double box.

The amplitudes of the 7-propagator graph and of all its subgraphs have been already evaluated
analytically in [1], so that, strictly speaking, the knowledge of a single maxcut adds only some more
or less marginal details to their knowledge; the hope is that an elementary approach to the planar
maxcut, when successfull, might be of help for the treatment of the non-planar Bhabha graph and
other similar amplitudes.
The planar double-box Bhabha graph has (of course) the same external kinematics of the 1-loop
single-box graphs – but two loop momenta, k1 and k2 are present. In obvious analogy with the 1-
loop case, the components of the loop momenta can be taken to be ki0, kix, kiy and ®Ki, with i = 1, 2.

5



P
o
S
(
M
A
2
0
1
9
)
0
0
2

Maximal cuts and Wick Rotations Ettore Remiddi

The scalar products with any the external vectors pi, which reads pik j = −pi0k j0 + pixk jx + piyk jy ,
with i = 1, .., 4, j = 1, 2, do not involve the components of the regularising (Minkoskian) vectors
®Ki, which enter however into the scalar product of the two loop momenta

k1k2 = −k10k20 + k1xk2x + k1yk2y − ®K1 ®K2 .

It can be convenient to take the direction of ®K2 as z-axis of ®K1, redefining the components of k1 as

k10, k1x, k1y,K1z, ®K1,

where now ®K1 has (d − 4) components, so that we can write

k2
1 = −k2

10 + k2
1x + k2

1y − K2
1z − K2

1 ,

k2
2 = −k2

20 + k2
2x + k2

2y − K2
2 ,

k1k2 = −k10k20 + k1xk2x + k1yk2y − K2K1z , (3.1)

and ∫
Ddk1 =

∫
dk10 dk1x dk1y dK1z Ω(d − 4)

∫ ∞

0
Kd−5

1 dK1 ,∫
Ddk2 =

∫
dk20 dk2x dk2y Ω(d − 3)

∫ ∞

0
Kd−4

2 dK2 . (3.2)

Note that the parametrization of the two loop integration region requires overall 9 variables, while
the one loop case requires only 4 variables.
At this point, the calculation of the double box maxcut becomes the (multidimensional) integration
of the product of 7 δ-functions (corresponding to the 7 propagators) in 9 integration variables,
namely the 5 integration variables corresponding to the loop k1 and the 4 variables corresponding
to k2.
The arguments of the δ-functions can be strongly simplified following the procedure leading from
Eq.s(2.3) to Eq.s(2.5), and all the integrations are essentially elementary, provided that
• they are carefully performed in a proper order;
• the positivity constraints are also properly accounted for.
As a first step, it is convenient to integrate first the 4 δ-functions depending on k1 on the 5 variables
related to k1. The result can be seen as a generalisation of the 1-loop Bhabha box Eq.(2.6) (the four
electron lines "external" to the k1 loop are all on the mass-shell), but with the would-be (spacelike)
Mandelstam variable t replaced by (−k2

2), where the loop-momentum k2 can be also timelike.
Indicating by B4(k2) the itegral of the 4 δ-functions of the k1 loop, one finds

B4(k2) = 2−d Ω(d − 3)
1

E p

(
k4

2

)− 1
2+

d−4
2

×

[
θ(k2

2y − K2
2 )

(
k2

2y − K2
2

)− d−4
2

+ θ(K2
2 − k2

2y)
1

cos
(
π d−4

2

) (
K2

2 − k2
2y

)− d−4
2

]
;
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due to the constraints of the δ-functions present in the maxcut one has k2
2 = k2

2y − K2
2 , so that the

first term corresponds (of course) to the previous result for the 1-loop Bhabha maxcut, where the
momentum transfer t is spacelike.
The calculation of the maxcut continues with the (almost trivial) integration in k20, k2y and K2 of
the 3 remaining δ functions, until a last integration in k2x is left. That last integration requires only
some care in working out the integration ranges which satisfy the positivity constraints. Apart from
an overall common factor (depending on d, but irrelevant), the result, say B7(d, s, t) can be written
as

B7(d, s, t) =
1

sin
(
(d − 3) π2

) F1(d, s, t) + F2(d, s, t) , (3.3)

where the two functions Fi(d, s, t) have the form of a definite integral over a single variable of
suitable expressions. Skipping any detail, the two integrals, expanded in powers of (d-4) up to next
to leading order, read

F1(d, s, t) =
1

s(s − 4m2)t

[
1

d − 4
+ ln(s − 4m2) − ln(s + t − 4m2) + ln(−t) − 2 ln(2)

]
,

F2(d, s, t) =
1

s(s − 4m2)t

[
1

d − 4
+ ln(−t) − 2 ln(2)

]
. (3.4)

The two terms are different; let us discuss that difference.
By standard methods, one finds that the scalar amplitude corresponding to the double box Bhabha
graphs of Fig.(2) satisfies a second order differential equation in s or t. The homogeneous part of
the equation in t (marginally simpler than the equation in s) reads [2]

t(s + t − 4m2)
d2

dt2 B(d, s, t)

+

[
3t + 2(s − 4m2) −

1
2
(s − 4m2)(d − 4)

]
d
dt

B(d, s, t)

+

[
1 +

s − 4m2

2t
(
(d − 4) − (d − 4)2

) ]
B(d, s, t) = 0 . (3.5)

According to the general discussion on the properties of the maxcuts, B7(d, s, t), Eq.(3.3), must
satisfy Eq.(3.5) – and that is indeed the case, at leading and next-to-leading order in (d − 4), as can
be easily verified by an explicitly calculation.
But it turns out that the equation is satisfied (always up to next-to-leading order in (d − 4) included,
i.e. up to zeroth order) also by the two terms F1(d, s, t) and F2(d, s, t) taken separately (and the
same applies to the s equation, not discussed here). In particular, the coefficient, say C1(s, t), of the
leading order in (d − 4) of the two solution, i.e. the the polar singularity 1/(d − 4), which is the
same for both the solutions

C1(s, t) =
1

s(s − 4m2)t
,

satisfies the leading order in (d − 4) of Eq.(3.5), which reads[
t(s + t − 4m2)

d2

dt2 + [3t + 2(s − 4m2)]
d
dt
+ 1

]
C(s, t) = 0 . (3.6)
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On the other hand, the difference, of F1(d, s, t) and F2(d, s, t), which are both solutions of the linear
equation Eq.(3.5) up to zeroth order in (d − 4), namely

F1(d, s, t) − F2(d, s, t) =
1

s(s − 4m2)t

[
ln(s − 4m2) − ln(s + t − 4m2)

]
,

is also a solution of Eq.(3.6) up to zeroth order in (d − 4). Let us call C2(s, t) that difference,

C2(s, t)
1

s(s − 4m2)t

[
ln(s − 4m2) − ln(s + t − 4m2)

]
,

which is of zeroth order in (d − 4); it turns out that C2(s, t) is also a solution of Eq.(3.6), besides
C1(s, t).
We obtain in that way, from the direct calculation of the maxcut B7(d, s, t), the two independent
solutions of the leading term in (d − 4) of the homogeneous part of the second order equation in t
for the Bhabha scalar amplitude (and the same applies to to the equation in s as well).

4. The subgraphs

We consider now the maxcuts of the subtopologies of the double box planar Bhabha graph in
which some of the electron propagators is missing,
By removing from Fig(2) the electron propagator of momentum p1 + k2 one obtains the graph of
Fig(3) :

�
�

�
�

p2

p1

p4

p3

k1 k2 − k1

p1 + k1

p2 − k1 p2 − k2

Figure 3: A 6-propagator subgraph.

The graph has 6 propagators, hence the integrand of the maxcut is the product of 6 δ functions, to
be integrated on the same 9 integration variables of the double box involving 7 δ’s, so that the δ’s
leave unconstrained one more integration variable with respect to the previous case, and therefore
apparently one more non trivial integration. As the k2 loop, however, is entirely internal to the
vertex subgraph of Fig.(3) (corresponding to the process (p2 − k1) → (p3 − p1 − k1) + p4), it turns
out that it is more convenient to parametrise the k2 loop with 5 integration variables and the k1

loop with 4 (contrary to the double box case, where the k1 loop was given 5 integration variables),
and to integrate all the k2 variables loop first. The resulting vertex amplitude (dropping an overall
angular factor) can be written as

V(V1,V2,V3) = −
1
2

π

d − 4

cos
(
π d−4

2

)
sin

(
π d−4

2

) × Θ(
R2(−m2,V2,V3)

)
× md−4 (

V2
2
) d−4

2
(
R2(−m2,V2,V3)

)− 1
2+

d−4
2 ,

8
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where the arguments of V are V1 = (p2 − k1)
2, V2 = (p3 − p1 − k1)

2, V3 = p2
4 = −m2,

and R2(V1,V2,V3) = V2
1 + V2

2 + V2
3 − 2V1V2 − 2V2V3 − 2V1V3.

The completion of the calculation of the maxcut with the integration in the four variables related to
k1 is then rather simple; dropping again an overall factor, the result for themaxcut of the 6-propagator
Bhabha subtopology, including leading and next to leading terms in (d − 4) is

B6(d, s, t) =
1√

s(s − 4m2)
√

t(t − 4m2)

×

[
−

1
d − 4

+ ln (2m) +
1
2

ln
s + t − 4m2

s − 4m2 − ln (−t) −
1
2

ln (4m2 − t)
]
.) (4.1)

It is easy to verify, as in the case of the maxcut of the planar double box graph, that B6(d, s, t)
satisfies the homogeneous equations for the amplitude of Fig.(3).
The next subgraph to consider is the 5 propagator graph of Fig.(4), obtained by removing the
electron propagator of momentum p2 − k1 from the graph of Fig.(3). The maxcut of its scalar

�
�
�
�

p2

p1

p4

p3

Figure 4: A 5-propagator subgraph.

amplitude consists of the same vertex subgraph appearing in Fig.(3) and given by Eq.(4.1), times
two δ functions only, to be integrated on the 4 variables of the k1 loop, amounting to the evaluation
of a non trivial double integral. That is not surprising, as the graph of Fig.(4) has 5Master Integrals,
so that the scalar amplitude satisfies a 5th order homogeneous differential equation in s or t.
The work on the amplitude is still in progress.

Conclusions

The direct calculation of maximally cut (maxcut) amplitudes can provide with the very first
step in the evaluation of Feynman graphs when the differential equation approach is used.
However, when the components of the loop momenta, within the standard d continuous regular-
isation, are parametrised in the standard way (one Minkoskian component only, while the other
phyisical and regularsing components are all Euclidean) the maxcut of most graphs vanish, as the
integration variables are overconstrained by the δ functions, whose arguments become positive
definite (and therefore never vanishing).
As recalled in the first Section, in the d continuous regularisation approach the regularising com-
ponents of the loop momenta do not span the space directions spanned by the physical vectors,
and therefore can be Wick-rotated (or, better, counterrotated) whitout changing the value of the
considered Feynman amplitude. As any Feynman propagator is the sum of two terms, a Principal
Value and a δ function, an N-propagator graph is in fact the sum of 2N terms, one of them (the term

9
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involving δ functions only) being the maxcut. When the Wick-counterotation of the regularising
components is performed, even if the sum of the 2N terms remains unchanged, the value of each of
the terms can change; in the maxcut, in particular, the positivity constraints on the arguments of the
δ’s are relaxed, due to the change of the metric for the regularising components – and the maxcut
no longer vanishes.
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