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1. Introduction

In the past years, several new developments have been achieved for multi-loop scattering
amplitudes computation. For example, particular interest has been put into tackling the 2 → 3
scattering processes at the next-to-next-to-leading order [1–15]. These theoretical inputs are needed
for analyzing data coming from the LHC collider, especially for precise background processes.

In obtaining these results, the study of Feynman integrals and their properties is still a funda-
mental tool to achieve progress. In this context, generating integration-by-parts (IBP) identities [16]
is an important step for computing amplitudes and Feynman integrals themselves, using the method
of differential equations [17–27]. As such computations are the current bottleneck for most of the
needed processes, there have been different approaches that try to bypass [28–35] or to simplify
this step by utilizing numerical methods [9, 10, 13, 36–38]. (See also ref. [27, 39–46] for integral
reduction not directly applying IBPs.)

The development of new IBP algorithms, basedmostly on ideas and tools coming fromalgebraic
geometry, is the main topic of this review. IBP relations are derived from the integration of a total
derivative. By generating enough of these identities it is possible to express each integral appearing
in the amplitude as a linear combination of a finite basis of master integrals (MI) using Gaussian
elimination and the Laporta algorithm [47]. There exist several available software packages, both
private and public, to obtain such relations [48–54]. The method presented here, relies on a different
approach, where firstly the a priory knowledge of basis of MI is needed. To obtain such a basis,
different methods can be used [55, 56]. Recently it has been discovered how a careful choice of
the basis can greatly simplify the reduction process [57–60] by generating simpler IBP coefficients.
A second step is to construct, using the Baikov representation and the Laplace expansion [61],
a canonical set of IBPs. It is then possible to further restrict the number of these identities by
requiring that no integral with double propagators appears [62–64]. This is achieved through a
module intersection computation [65]. An extra step is then to construct a spanning set of cuts [64],
further reducing the problem as it is possible to divide the integrals contributing to the IBP identities
into different families and treat them separately1. Finally, besides reducing the number of identities
generated, it is important to have an efficient Gaussian elimination to solve the associated linear
system. The most efficient method for performing this task is to utilize rational reconstruction and
interpolation [54, 67–69], where by sampling different numerical points one can obtain the analytical
form of the IBP coefficients. In our implementation of this idea, we rely on the Singular-GPI-
Space framework [70] for massively parallel computation in computer algebra, which combines the
computer algebra system Singular [71] with the workflow management system GPI-Space [72],
and thus allows us to massively parallelize the reduction and interpolation part of the algorithm.
This framework relies on Petri nets to coordinate the computation in GPI-Space, while Singular is
used as the computational back end. The Petri net formalism used in GPI-Space is an extension of
the basic idea, which allows tokens in the net to be complex data structures. Modifying our original
implementation in the Singular-GPI-Space framework, we illustrate the use of the new plugin
feature of GPI-Space to extend the Petri net formalism to manage a global state of the computation
and integrate mutable data into the formalism. The IBP reduction method described here has been

1It is also possible to singularly nullify the integrals appearing in the reduction process [66].
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successfully used to obtain reduction for the non-planar 5-point topologies appearing at 2-loop
order [57, 65].

In this reviewpaper, we also present aMathematica interface for generating IBPswithout double
propagators (or IBPs with restricted propagator degree), via our module intersection method, see

https://bitbucket.org/yzhphy/module-intersection/src

This review is organized as follows: In Section 2, we present the intersection algorithm used to
generate the IBP system. In Section 3, we describe our Gaussian reduction approach, introducing
the GPI-Space system and the Petri net formalism to formulate our workflow. We then present some
examples and finish with some outlook on possible future directions.

2. Module Intersection

In this section, we explain the module intersection method of generating a trimmed IBP system.
We consider the Baikov representation of Feynman integrals.

I[α1, . . . , αm] = CL
E U

E−D+1
2

∫
Ω

dz1 · · · dzmP(z)
D−L−E−1

2
1

zα1
1 · · · z

αm
m

, (1)

where P(z) is the Baikov polynomial

P = det G

(
l1, . . . lL, p1, . . . pE

l1, . . . lL, p1, . . . pE

)
. (2)

Here U and CL
E are the Gram determinant and constant factor, which are irrelevant for the IBP

reduction. The polynomial P vanishes on the boundary of integration ∂Ω.
In the Baikov representation, an IBP relation reads

0 =
∫

dz1 · · · dzm
m∑
i=1

∂

∂zi

(
ai(z)P

D−L−E−1
2

1
zα1
1 · · · z

αm
m

)
, (3)

where the ai(z) are polynomials in the Baikov variables z = (z1, . . . , zm). Expanding the total
derivative above, we get an IBP relation of Feynman integrals. Note that the resulting relation may
not match our demands: the derivative of P provides dimensionally shifted integrals, and for the
traditional IBPs there is no control of the propagator power increase. However, it is easy to meet
these demands by adding constraints on the ai(z). Let S be a subset of {1, . . . ,m}, for which the
propagator indices are supposed to be constrained:( m∑

i=1
ai(z)

∂P
∂zi

)
+ b(z)P = 0 , (4)

ai(z) = bi(z)zi , i ∈ S, (5)

where b(z) and the bi(z) are all polynomials in the Baikov variables. The second equation is to
make sure that the resulting IBP relation does not increase the propagator power αi for i ∈ S. These
are the so-called syzygy equations.
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The first syzygy equation (4) can be easily solved by the Laplacian expansion of a symmetric
matrix [36], or the canonical IBPs converted to Baikov form [36]. The solution set is a polynomial
module called M1 whose generators are at most linear in the Baikov variables. This step takes
almost no computing time.

The module solving the syzygy equations (5) clearly has the trivial generating set ai = zi,
bi = 1, i ∈ S. We call this solution set M2. So without much computing efforts, we get M1 and M2,
the solution sets for the syzygy equations (4) and (5), individually.

The main computational goal is then to get,

M1 ∩ M2 . (6)

This module intersection is obtained via a module Gröbner basis in a position-over-term ordering
[65].

Although the generators of M1 and M2 contain at most linear polynomials in the Baikov
variables, the intersection computation needs the following technique to finish efficiently:

• Localization. Let the kinematic parameters (Mandelstamandmass parameters) be (c1, . . . , ct ).
Instead of the obvious computation in the ring R = Q(c1, . . . , ct )[z1, . . . , zm], we do the com-
putation in the ring R′ = Q[z1, . . . , zm, c1, . . . ct, ] with the block ordering

z1, . . . , zm � c1, . . . ct . (7)

This amounts to treat parameters in the same way as the Baikov variables. This technique is
essential for the multivariate computations to finish. After the Gröbner basis computation in
R′, we map the result back to R and remove redundant generators.

• The use of a degree bound for the intersection computation. Usually, we do not need the full
generating set of the intersection M1 ∩M2. So heuristically, we can apply a degree bound on
the intersection computation to reduce the computation time. In practice, this is done via the
“degBound” option in Singular. A posteriori, we verify that the degree bound was chosen
large enough.

To this proceedings article, we attach a Mathematica interface to Singular for the module
intersection computation and for generating constricted IBP relations. A pure Singular version of
this will be available in the future as a Singular library.

3. Efficient Gaussian Elimination with GPI-Space

In this section we discuss our parallel implementations in the workflow management sys-
tem GPI-Space [72] in combination with the computer algebra system Singular [71] using the
framework developed in [70]. In the computation of Feynman integrals, GPI-Space is used to par-
allelize the Gaussian reduction of the linear system which is derived from the IBP identities. This is
achieved by splitting the large reduction job into numerous small ones by passing to “semi-numeric”
computations, which are then recombined using interpolation.

In the following, we will give a short overview of GPI-Space and Petri nets, which are used
to formulate parallel workflows. We will then describe the Petri nets used in the computation of
Feynman integrals. For more details, also refer to [73].
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t t
t2

Figure 1: Transition firing until it is disabled.

3.1 GPI-Space and Petri Nets

GPI-Space is a workflow management system developed by the Fraunhofer Institute for Indus-
trial Mathematics (ITWM) and is comprised of three components:

• The distributed run-time system (DRTS) initializes and manages workers in accordance with
the available computing resources, and allocates computing jobs as they become available.

• The workflow engine (WE) tracks the state of the workflow. Jobs available for execution are
identified and, together with their input data, sent to the DRTS for scheduling.

• A virtual memory layer allows communication and data sharing between different machines
managed by GPI-Space.

Petri nets serve as the top level description of workflows for the GPI-Space engine. They can
be defined as directed bipartite paths where the nodes are divided into places and transitions, which
model the data that is passed between procedures, and data processing algorithms, respectively.
Depending on the orientation of the directed vertex between places and transitions, places may be
input or output places of a given transition. Places may hold tokens, which represent the data, and
can be consumed or produced by transitions. The association of tokens to places at a given time is
called a marking of the Petri net.

If all input places of a transition hold at least one token, the transition is called enabled and
may fire, that is, one token is consumed from each input place, and each output place receives a new
token. If we have a marking M of a Petri net and obtain a new marking M ′ by firing the transition
t, we write M

t
−→ M ′. If t can fire multiple times, producing a sequence of markings

M
t
−→ M (1)

t
−→ · · ·

t
−→ M (n)

by a sequential execution of the firings, the transition t, in fact, can fire in parallel for each tuple of
available input tokens. This form of parallelisim offered by Petri nets is referred to by the notation
M

tn

−→ M (n) and is called data parallelism. Examples of data parallelism are shown in Figures 1
and 2a. In figures, we depict transitions as boxes and places as circles. The flow relations between
places and transitions is given by arrows. Of course, this parallelism extends to multiple transitions
as well. If several transitions are enabled, they can fire at the same time. This is called task
parallelism and is illustrated in Figure 2b.

In the basic formulation of a Petri net, tokens are structureless and not distinguishable. In order
to make programming in terms of Petri nets a practically feasible task, Petri nets in GPI-Space are
augmented with additional features:

5
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t2

(a) Data parallelism

s

f

g

(b) Task parallelism

Figure 2: Minimal Petri nets illustrating parallelisms

1. The most important addition is for tokens to hold actual data (which corresponds to the
theoretical concept of so-called colored Petri nets). GPI-Space offers primitive data types
and allows the use of user-defined types via an embedded programming language. In this way
it possible to impose additional restrictions on the tokens which a transition can accept. This
can be used to implement if-then-else and loop functionality on the Petri net level. In
particular, it is then possible to connect a place to more than one transition as an input without
ambiguity (a token might otherwise be consumed by any connected transition at random, see
for example Figure 3). In fact, even though GPI-Space allows that conflicts may arise and
then randomly selects a transition to fire, in almost all cases Petri nets are easier to maintain
if there never exist more than one transition which can consume a given token.

2. In colored Petri nets, tokens can be equipped with a type and transitions may impose type
restrictions on their input. In GPI-Space, places and transitions are strictly typed, which
means that they must be defined with a fixed type signature. In particular, places and
transitions can only be connected if these signatures match.

3. For small computations, an embedded programming language can be used to carry out so-
called tiny computations, which are not scheduled for execution in a (potentially remote)
worker process, but are instead executed directly in the workflow engine. For tasks involving
only small arithmetic computations ormanipulation of container data, this avoids unnecessary
overhead.

The execution of a Petri net is non-deterministic in both the choice of which transition to fire and
the choice which token to consume. The actual choice depends on a random number generator and
variations in the execution times of the transitions. In other words, in order to facilitate parallelism,
GPI-Space forces the applications to use a functional approach to programming which does not
depend on an external state. Especially in the context of computer algebra, the introduction of non-
determinism has proved to lead to an increase in consistency and predictability of our algorithms.

3.2 The Petri Net for the Matrix Reduction of a Single Cut

Thematrix reduction performed on a given set of IBP identities is themost involved part in terms
of computation time and memory, which makes it the most suitable component of our algorithm
for a massively parallel implementation. As previously described, this is achieved by substituting a
subset of parameters with a number of numeric values, carrying out the necessary computations in

6
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t1

t2

t1

t2

t1

t2

t1 t2

Figure 3: Conflict of two transitions leading to different program flows.

the semi-numeric setting, and then recombining the results into the final, row-reduced linear system
via polynomial interpolation.

GPI-Space allows the user to attach so-called plugins to a workflow, which can insert tokens
(holding data) into the net, independently of the execution of the Petri net by firing transitions.
Compared to traditional Petri net formulations, one main advantage of this plugin system is the
ability to maintain a global state of the computation: Emulating such a state as a single token in
a Petri net would require a complete rewrite for each update to the state, since a transition would
first have to consume this token and then place back the modified token. For larger tokens, this
introduces an unreasonably large overhead and may impact the performance significantly. In the
initial version of our IBP reduction Petri net, this was circumvented by simply starting a remote
process which kept track of the state. Where required, a transition could then communicate with
this process to send and receive tokens.

Using the plugin system, this approach can now be realized without running processes outside
of the execution of GPI-Space. The plugin-managed state is created and controlled by the Petri
net and its GPI-Space provided identifier is used by the Petri net to steer all modifications and
retrieve information stored in the plugin-managed state. The Petri net uses (specifically annotated)
transitions to transport tokens into the plugin. The plugin-transition can receive tokens from the
plugin and insert them into the Petri net just like every "normal" transition. In addition, the
plugin can also work independently from and in parallel to the Petri net and use (specifically
annotated) places to inject tokens into the running Petri net. In summary: The Petri net plugins are
a mechanism to enable Petri nets to explicitly managemutable state without involving the scheduler
and the runtime system, while retaining the conceptual advantages of the Petri net formalism.

The Petri net shown in Figure 4 illustrates the current version of the Petri for computing the
matrix reduction of the IBP identities obtained from a single cut. Dashed arrows refer to read-only
connections, which means that tokens are in fact not consumed, allowing parallel access to data
where modification is not necessary. Dotted arrows show the special data and token movement
between the net and the plugin. Finally, transitions may be annotated with conditions restricting

7



P
o
S
(
M
A
2
0
1
9
)
0
0
4

Module Intersection Janko Böhm and Yang Zhang

their execution, which enables us to implement conditional execution on the Petri net level. In the
following, we describe the execution structure of the net:

copy reference

if not Rpre.empty

generate reference

if Rpre.empty

Rpre R

compute missing dataIpre I

compute structure d

reduce & normalizep

mark success

if not m.bad

mark failure

if m.bad

interpolatei

m
interpolation tree

plugin

f

Figure 4: Updated and simplified Petri net incorporating plugin system.

Input tokens: The net is initialized with two tokens. One is the input data token which is put onto
Ipre. It is a structured type with the following fields:

• The (filename pointing to the) input linear relations stored as a matrix over a rational
function field Q(®c,D).

• The list of indices of the parameters which will be substituted during the reduction
computation and interpolated, say {1, . . . , r}.

• The list of indices of parameters which will be substituted during the reference reduc-
tion. This is not necessarily the complement of the set of interpolated parameters, for
instance, if some parameters in the function field are of no interest during the reduction
computations.

• The list of target integral indices.

8
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• Optionally: A precomputed trace for row and column swaps during the reduction step.
This field will be referred to as trace in the Petri net.

• Optionally: A list of master integral indices. These indices can be obtained by a fixed-
column computation and thus can be omitted. In the net, this field is referred to as
master.

The second token is a reference token which is required by our rational function interpolation
algorithm and contains an result for the complementary set of analytic parameters, that is,
exchanging in the hybrid approach the interpolated and the analytic parameters. This token is
put onto Rpre. This token optionally contains a reference substitution point and the relations
from Ipre already reduced according to this point. The data field empty of the token can be
used to indicate that this token does not contain this information.

This option is useful in the following sense: If the number of substituted parameters is
considerably larger than the set of reference parameters, then a direct computation of the
reference might not be feasible. In this case, the reference is computed by iteratively using
the parallel algorithm.

Transition copy reference: If for a token on the place Rpre the field Rpre.empty has the
value false, this token holds a precomputed reference matrix. In this case, the token is simply
moved to R by the transition copy reference.

Transition generate reference: Otherwise, that is, if Rpre.empty is true, no reference
matrix was supplied. This transition then generates a random reference point and computes
the reference matrix, which is then put onto the place R.

Transition compute missing data: This transition computes the optional fields trace and
master, if they are missing from the input token on Ipre. The completed input token is then
put onto the place I. In practice, this transition is a slightly more involved subnet. Since it is
functionally and structurally not particularly interesting, it is omitted from our presentation.

Transition compute structure: Again, this is a simplification of a more involved subnet
to simplify the presentation. Here, the polynomial degrees of all coefficients of the fully
reduced linear system are computed for each parameter via univariate computations. The
maximum degrees per parameter are supplied to the interpolation tree plugin to determine
the required number of interpolation points. A list of matrices which hold the degrees of the
numerator and denominator of each matrix entry is then put onto the place d. This data on
the polynomial degrees is required in the normalization step.

Interpolation Tree Plugin: The tree manages the interpolation progress in a tree structure, as
outlined above. As soon as the degree data is determined, the plugin can generate an initial
required set of interpolation points, which are then put onto the place p. If reductions fail or
result in bad data, points are marked as failures in the tree. Accordingly, the plugin generates
new points to ensure that sufficient data for the interpolation is available. If, however, enough
reductions (or interpolations) for a given parameter are successful, the plugin generates the
corresponding point for this interpolation, which is then put onto the place i. When the

9
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root of the interpolation tree, which corresponds to the fully interpolated result, is marked
as completed, the interpolation tree plugin outputs the filename of the final result as a token
onto the place f . This terminates the execution of the Petri net.

Transition reduce & normalize: For a point token from p, this transition performs the
matrix reduction according to the traces supplied in the input token on I. As we perform
division during the computation with fixed column and row swap traces, we may encounter
division by zero after substituting certain integer values. In this case, the output token will
be marked as bad. With the degree data from d and the reference reduction result from R,
the transition in addition normalizes the successful reduction result and potentially marks it
as bad, if polynomial cancellation occurred in some entry. Output tokens store the associated
substitution point and (the filename of) the reduction and normalization result if it exists.
Accordingly, the token has the additional field bad and is put onto the place m.

Transitions mark success and mark failure: As stated above, the tokens on m indicate
with the field bad whether the reduction and normalization computations produced a valid
result. These two transitions then mark the associated substitution point accordingly as
completed or failed in the interpolation tree.

Transition interpolate: The tokens in i are generated by the interpolation plugin to contain
the filenames for all matrices required for the particular interpolation. This transition then
simply computes the polynomial interpolations for both numerators and denominators of
the result matrix. The resulting matrix and the substitution point which correspond to this
interpolation are then put onto the place m. These tokens will always have a bad-value of
false.

As stated in the description above, the Petri net execution terminates as soon as the output
matrix is fully interpolated and the corresponding token is put onto the place f .

A desirable feature of long-running large-scale computations is restartability from a previously
reached state, due to the possibility of compute node failures or job cancellations upon reaching
imposed time limits. For our algorithm, this can be achieved by storing – or recreating – the
interpolation tree managed by the plugin. Since the tree creation deterministically depends on
the list of parameter indices and their degrees, recreating subsequent states can be achieved by
logging the modifications of this tree, that is, by recording whether a node was marked as failed or
successful, and re-applying them. Since the information logged in this way does not comprise the
full structure for most of the Petri net execution, this is more efficient than storing the whole tree.
Of course, this requires the user to restart the algorithm without changing its parameters, which
introduces potentially undesirable inflexibility.

4. Example

In this section, we present a nontrivial example of IBP reductions, namely the two-loop five-
point non-planar integrals, as shown in Figure 5. The symbols of its UT integral basis were
calculated in [5, 11], and the analytic expressions were obtained in [74].
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Figure 5: Two-loop five-point nonplanar double pentagon diagram with inversed propagators zi .

The propagators of this integral family are

D1 = l2
1 D2 = (l1 − k1)

2 D3 = (l1 − k12)
2 D4 = l2

2

D5 = (l2 − k123)
2 D6 = (l2 − k1234)

2 D7 = (l1 − l2)2 D8 = (l1 − l2 + k3)
2

D9 = (l1 − k1234)
2 D10 = (l2 − k1)

2 D11 = (l2 − k12)
2 , (8)

where the li represent the loop momenta, the ki represent external momenta, and ki · · · j =
∑j

i ki.
The difficulty of the IBP reduction is due to the 6 parameters, which are s12, s23, s34, s45, s15

and the spacetime dimension D, and the nonplanar feature. We illustrate our algorithm by IBP
reducing the 26 integrals up to the numerator degree of 4, to a Laporta integral basis. (We note
that the degree-5 analytic IBP reduction of the same diagram to a Laporta basis was calculated in
a recent paper [54] by the reduction of a new type of integral relations in the block triangular form
[44].)

Furthermore, we convert the IBP coefficients to the coefficients of a dlog basis and use an
improved Leinartars’ algorithm to further simplify the coefficients.
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First, we use Azurite [56] or mint to find an integral basis. Ignoring symmetries, there are
113 irreducible integrals, while there are 108 master integrals with symmetries. We apply spanning
cuts of this integral family, when using the package ModuleIntersection to generate IBPs without
double propagators. The 11 spanning cuts are,

{1, 5, 7}, {1, 5, 8}, {1, 6, 8}, {2, 4, 8}, {2, 5, 7}, {2, 6, 7},
{2, 6, 8}, {3, 4, 7}, {3, 4, 8}, {3, 6, 7}, {1, 3, 4, 5} (9)

where the numbers refer to the propagator indices.
Relying on the degbound option in Singular, the intersections are generated using the

command ModuleIntersection. For a polynomial degree bound of 5, utilizing one core, it takes
in total less than 5 minutes to analytically generate all the module intersections. A posteriori, we
see that a degree bound of 5 is sufficient for this IBP reduction problem.

After getting the IBPs without double propagators, we apply a two-step trimming process to
select only IBPs necessary for the target integrals. This computation is done over finite fields and
powered by the linear algebra package SpaSM.

Different spanning cuts may support the samemaster integral, that is, there can be a cut overlap,
e.g., the two cuts {1, 5, 7} and {2, 4, 8} both support I[1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0]. Then, we may apply
the non-pivot column mask method in ref. [66] to impose

I[1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0] = 0 (10)

in either cut {1, 5, 7} or {2, 4, 8}.
As common when computing IBP reductions, we can remove one scale from the problem by

setting
s12 7→ 1, c2 ≡ s23/s12, c3 ≡ s34/s12, c4 ≡ s45/s12, c5 ≡ s15/s12. (11)

The resulting IBP relations are very short and sparse, as demonstrated in Table 1.

Cut # relations # integrals size d2 d3

{1,5,7} 1134 1182 0.77 MB 21 22
{1,5,8} 1141 1192 0.85 MB 18 18
{1,6,8} 1203 1205 1.1 MB 19 30
{2,4,8} 1245 1247 1.1 MB 35 24
{2,5,7} 1164 1211 0.84 MB 26 18
{2,6,7} 1147 1206 0.62 MB 16 17
{2,6,8} 1126 1177 0.83 MB 16 18
{3,4,7} 1172 1221 0.78 MB 19 18
{3,4,8} 1180 1226 1.0 MB 19 22
{3,6,7} 1115 1165 0.82 MB 21 28
{1,3,4,5} 721 762 0.43MB 14 14

Table 1: IBP relations generated by the module intersection method. Denoted by d2 and d3 we also provide
the degree of c2 and c3 after the IBP reduction.
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We use our linear reduction algorithm via Singular and GPI-Space for this problem. The
computation is done in a semi-numeric fashion by considering c4, c5 and the space-time dimension
D as symbolic variables, and taking c2 and c3 numerically. It is easy to determine the maximal
degree of c2 resp. c3 in the final reduced IBPs by a univariate computation. The degrees are listed
in Table 1.

Different cuts need different amounts of sample points. For instance, for the cut {1, 5, 7}, 506
points are required. Different cut IBP reductions also need different running times: For example, the
simplest cut {1, 3, 4, 5} takes only about 11 minutes when using 384 CPU cores. As a comparison,
the cut {3, 4, 8} is much more difficult: its running time was 12 hours and 21 minutes, with 384
cores.

We merge the IBP reduction on all the cuts to get the complete IBP reduction to a 113 integral
basis. Furthermore, we apply the symmetries from Azurite [56] to reduce the 113 basis further to
a 108-integral Laporta basis I. The final result is large, with a size of ∼ 2.0 GB with s12 7→ 1, and
a size of ∼ 2.4GB when the s12 dependence is recovered. The result is numerically consistent with
that obtained by FIRE6 [50].

As discussed in ref. [57], the resulting IBP coefficients can be simplified by converting to a
dlog basis. For this example, we use the dlog basis in [74]. Again we apply the semi-numeric
approach and then interpolate the variables c2 and c3. The computation is powered by Singular
and GPI-Space. A posteriori, we see that the maximal degrees for c2 and c3 have decreased to

d ′2 = 20, d ′3 = 20. (12)

Note that with the Laporta basis, d2 = 35. After the computation, we see that the IBP reduction
coefficients in this dlog basis have a size of 480 MB on disk with s12 7→ 1 or 720 MBwith symbolc
s12. It is a significant 70% reduction of the IBP coefficient size.

If only the IBP reduction coefficients in the dlog basis are needed, we can skip the computation
for the Laporta basis IBP coefficients, and directly convert the semi-numeric intermediate results
to the dlog basis IBP coefficients. This would reduce the number of sampling points.

The size of the IBP coefficients in the dlog basis is, however, still large. In ref. [60], we
discovered that with an improved version of Leinartas’ algorithm implemented in Singular, the
coefficient size can be dramatically reduced to only 19 MB, with symbolic s12. Comparing with
the original IBP coefficients of size 2.4 GB, this is a 100-fold simplification of the IBP reduction
coefficients.

5. Summary and Outlook

We have illustrated some recent progress that has been made on tackling the IBP reduction
problem. In our approach, the problem is simplified in different algorithmic sub-steps: Firstly by
using methods from algebraic geometry to simplify the generated IBP system. A Mathematica
interface for generating IBPs with restricted propagator degrees is presented. Secondly by using
the Singular-GPI-Space framework to perform Gaussian elimination relying on interpolation of
parameters in a massively parallel way. Finally, we have seen how a good choice of basis, in our
case the dlog basis, and an efficient algebraic representation of the data can significantly simplify
the output of the reduction.
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With these new developments, we could hope to tackle higher points or higher loop reduc-
tions and amplitudes with increasing number of off-shell external points or internal masses, thus
increasing the precision of the theoretical predictions for processes of phenomenological interest.
Moreover, we could apply the Singular-GPI-Space framework to other problems than IBP re-
duction, for example, in recent years some progress has been made into studying the Bethe ansatz
equations and partition functions of integrable models [75] or for the study of Grassmanians and
their tropical varieties [76].
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