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1. Physics context and summary of main results

1.1 Feynman graphs and integrals

Quantum Field Theory is among the main frameworks of the physics of our time, and the back-
bone of all computational techniques to compare theory and experiments in high-energy physics.
The interactions among the quantum fields and states are encoded by correlation functions and
on-shell scattering amplitudes. While it is not in general possible to compute these quantities
exactly, they can be expanded into a perturbative series in cases where the theory contains a small
parameter.

The perturbative series can be neatly organised in terms of Feynman graphs, and the L-th
order in the perturbative expansion receives contributions from Feynman graphs with L loops. The
precise definition of a Feynman graph is not important for the purposes of this paper (see, for
example, [1]). Here it suffices to say that to each Feynman graph one can associate a Feynman
integral, which depends on the dimension d of space-time and is a function of the external kinematic
data (e.g., the masses and momenta of all external particles).

Whenever it converges, a Feynman integral defines a family of periods depending on kinematic
parameters that is a generalisation of the notion of period in the sense of Kontsevich and Zagier [2].
For algebraic values of the masses and momenta it is exactly a period in their sense. One can show
that Feynman integrals can be promoted (at least when the masses and momenta are generic and d
is even) to ‘motivic periods’ of the cohomology of a family of algebraic varieties [1]. The same is
almost certainly true in all cases.
Remark 1.1. Feynman integrals are often divergent and need to be regularised. While various
different regularisations exist, the most commonly used regularisation in physics is Dimensional
Regularisation [3–5]. Loosely speaking, it consists in replacing the space-time dimension d by
D = d − 2ε, where ε is a variable taking values in C. One obtains in this way a meromorphic
function of ε [6], which admits a Laurent expansion around ε = 0. The objects of interest are
the Laurent coefficients, which are then also families of periods in the spirit of Kontsevich and
Zagier [7]. In applications one is only interested in the first few terms in the Laurent expansion,
because only a finite number of Laurent coefficients contribute to the physical observable of interest
(which must be finite and independent of the chosen regularisation).

1.2 Iterated integrals and multiple polylogarithms

It is known that large classes of Feynman integrals can be evaluated in terms of iterated
integrals. Let X be a smooth m-dimensional complex manifold. Let γ : [0,1] → X be a piecewise
smooth path on X , and let ω1, . . . ,ωn be smooth one-forms on X . We denote the pullback of ωi

to the interval [0,1] by dt fi(t) = γ∗ωi. The iterated integral of the forms ω1, . . . ,ωn along γ is
defined as ∫

γ
ω1 · · ·ωn :=

∫
0≤t1≤t2≤···≤tn≤1

γ∗ω1 ∧ . . . ∧ γ
∗ωn

=

∫
0≤t1≤t2≤···≤tn≤1

dt1 f1(t1) · · · dtn fn(tn)

=

∫ 1

0
dtn fn(tn)

∫ tn

0
dtn−1 · · ·

∫ t2

0
dt1 f1(t1) .

(1.1)
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More generally, an iterated integral is any linear combination of such integrals. The empty iterated
integral (when n = 0) is defined to be the constant function 1. We will only be interested in
homotopy-invariant iterated integrals, i.e., linear combinations that only depend on the homotopy
class of the path γ in X . All iterated integrals that appear in the computation of Feynman integrals
are of this type, where X denotes the complex points of a smooth algebraic variety over Q, and
all iterated integrals are Q-linear combinations of integrals of forms ωi which are globally defined
logarithmic forms on X which are defined overQ. To spell this out in more detail, Feynman integrals
typically give rise to homotopy-invariant iterated integrals of forms ωi which are holomorphic or
of the form d log f where f is a rational function on X . Frequently, X is an open subset of (a finite
covering of) an affine spacewith coordinates x1, . . . , xn, and one canwriteωi = d log Ri(x1, . . . , xm),
where Ri(x1, . . . , xm) is a rational (or algebraic) function.

A particularly important representative of iterated integrals of d log-forms are multiple poly-
logarithms (also known as hyperlogarithms), which were first introduced in the works of Poincaré,
Kummer and Lappo-Danilevsky [8, 9] and have recently reappeared in both mathematics [10–12]
and physics [13–15]. Multiple polylogarithms can be defined as

I(a1, . . . ,an; z) =
∫ z

0

dt
t − a1

I(a2, . . . ,an; t) , (1.2)

where ai, z ∈ C, and the recursion starts at I(; z) = 1. If an = 0 the integral in (1.2) diverges, and
we define instead

I(0, . . . ,0︸  ︷︷  ︸
n times

; z) =
1
n!

logn z . (1.3)

Multiple polylogarithms are well-studied in mathematics and in physics. In particular, it is well
understood how to perform algebraic manipulations of multiple polylogarithms. In addition, there
are several fast numerical implementations of these functions that can be used for their evaluation at
high precision [16–22]. Given the good algebraic and numerical control one has over multiple poly-
logarithms, it is often desirable to express Feynman integrals, scattering amplitudes and correlation
functions in terms of multiple polylogarithms whenever possible.

If an iterated integral is homotopy-invariant and the functions Ri(x1, . . . , xm) are rational
functions of the variables xi (with coefficients inQ say), and if the base point of the integration path
is algebraic, then one can always write the integral in terms of multiple polylogarithms evaluated at
algebraic arguments. Indeed, we can use homotopy-invariance and replace the path of integration
by a homotopic path along the edges of a hypercube where all but one of the variables are constant.
However, if the Ri(x1, . . . , xm) are not rational, no such algorithm exists. Nonetheless, many
examples of iterated integrals of d log-forms with non-rational arguments that have appeared in
physics can be evaluated in terms of multiple polylogarithms (see, e.g., [23]). This has led to
folklore conjectures in the physics community that every (iterated) integral of d log-forms with
algebraic arguments can be expressed in terms of multiple polylogarithms evaluated at algebraic
points (at least in principle). The purpose of this paper is to show that this is false by providing an
explicit example of a double iterated integral of d log-forms which cannot be expressed in terms of
any linear combination of multiple polylogarithms evaluated at algebraic arguments (assuming the
standard period conjecture). We highlight the implications for quantum field theory below, after a
brief technical summary of our results.
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1.3 Summary of results

Let ρ = −e2πi/3 = e−iπ/3, and ρ̄ denote its complex conjugate. In §5 we consider the iterated
integrals:

IE = 2 Re
∫
−1≤x1≤x2≤∞

1
ρ − ρ

d log
(

x1 − ρ

x1 − ρ

)
∧ d log

©«
√

1 + x3
2 + 1√

1 + x3
2 − 1

ª®®¬ , (1.4)

I =
∫

2≤x1≤x2≤∞

1
ρ − ρ̄

d log
(

x1 − ρ

x1 − ρ̄

)
∧ d log

©«
√

1 + x3
2 + 1√

1 + x3
2 − 1

ª®®¬ . (1.5)

In order to interpret these integrals geometrically, consider the algebraic curve in P2 defined
by the equation

zy2 = z3 + x3 . (1.6)

It defines an elliptic curve E, so in particular it is not possible to find any change of variables such that
the argument of the logarithm in the integrands in (1.4) and (1.5) becomes rational. By constructing
the underlying ‘motives’ of these integrals (we shall use the word ‘motive’ loosely to mean an
object in a category of realisations which arises from the cohomology of an algebraic variety)
and proving that they contain a non-trivial mixed elliptic extension, we prove in Corollary 5.2
and 5.3 that the motivic versions Im

E
and Im of these integrals are algebraically independent from

all motivic polylogarithms at algebraic points. It then follows from a version of Grothendieck’s
period conjecture that IE = per(Im

E
) and I = per(Im) cannot be expressed in terms of multiple

polylogarithms evaluated at any algebraic argument.
The obstruction to being polylogarithmic is the same for both Im

E
and Im. More precisely, we

show in §5.2 that there is a linear combination ImPol of Im
E
and Im:

Im =
1
6

ImE + ImPol , (1.7)

where ImPol is a motivic period of a mixed Artin-Tate object, which numerically evaluates to a linear
combination of dilogarithms and logarithms. The obstruction itself is an extension of H1(E) by a
certain Dirichlet motive Qχ(−2). The non-triviality of this extension is precisely detected by the
non-vanishing of the integral IE . Furthermore, Beilinson’s conjecture [24, 25] then predicts that IE ,
which is essentially the regulator, is proportional to the (non-critical) value at 2 of the L function
of E. Indeed, this is what we find numerically, and could almost certainly be proven rigorously
using the theory of iterated integrals of Eisenstein series (i.e., multiple modular values) as we now
explain.

A key point is that E defined by (1.6) admits a modular parametrisation. Let Γ(N) ⊂ SL2(Z)

be the principal congruence subgroup of level N , H = {τ ∈ C : Im τ > 0} the complex upper
half-plane, and Y (N) the modular curve obtained by taking the (orbifold) quotient of H by the usual
action of Γ(N) via Möbius transformations. There is an isomorphism ϕ : Y (6) → E\C, where C
denotes a finite set of points. The pullback ϕ∗ω of a logarithmic differential form ω on E with poles
along C can be identified with a modular form of weight two for Γ(6). The holomorphic differential
on E pulls back to the unique (normalised) cusp form of weight two, whereas d log-forms pull back
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to linear combinations of Eisenstein series and this cusp form. As a result the integral I in (1.5) can
be expressed (§6) as a double iterated integral

I =
1

ρ − ρ̄

∫
0≤t1≤t2≤∞

dt1 ∧ dt2
(2π)2

E1(it1) E2(it2) , (1.8)

where E1(τ) and E2(τ) are certain Eisenstein series of weight two for Γ(6). In [26] it was shown
that double iterated integrals of Eisenstein series of small weight for the full modular group Γ(1)
evaluate to multiple zeta values, and periods of simple extensions of motives of cusp forms for Γ(1).
The latter include non-critical L-values of cusp forms (amongst other quantities) and first appear
when the sum of the modular weights of the two Eisenstein series is twelve, because the first cusp
form for Γ(1) has weight twelve. Since Γ(6) has genus one, the first cusp form already appears in
weight two:

f (τ) = η(τ)4 , (1.9)

where η(τ) is the Dedekind η function. By the general theory, we therefore expect the double
iterated integral in (1.8) to evaluate to a linear combination of multiple polylogarithms evaluated at
sixth roots of unity and the value at 2 of the completed L function of the cusp form f :

Λ( f ,2) =
∫ 0

i∞

dτ f (τ) τ = 0.85718907492991773071685111 . . . (1.10)

Using the PSLQ algorithm, we find (with IPol = per(ImPol)):

IE = −4 π
√

3Λ( f ,2) , (1.11)

IPol =
5
√

3
Cl2

(π
3

)
, (1.12)

where Cl2
(
π
3
)
= Im Li2(eiπ/3). These evaluations could be proven rigorously with a more detailed

analysis: the first should follow from an application of a version of the Rankin-Selberg method to
double Eisenstein integrals, as was done in [27] in level 1. The second could be proven using, for
example, the theory of multiple elliptic polylogarithms and unipotent completion of the motivic
fundamental group of the universal elliptic curve. Since these computations are quite lengthy and
technical and are not required for the main point of this paper, they are not presented here.

1.4 Implications for Quantum Field Theory

The integrals IE and I are explicit examples of integrals of d log-forms that cannot be evaluated
in terms of multiple polylogarithms at algebraic points. Here we discuss some implications for
perturbativeQuantumField Theory, because these integrals are concrete counter-examples to certain
folklore beliefs in the community stating that all integrals of d log-forms evaluate to polylogarithms.

The role of the integration cycle. An integrand that can bewritten in d log-formwith algebraic
arguments is insufficient for an integral to evaluate to multiple polylogarithms. Whether an integral
evaluates to polylogarithms is not determined by the integrand alone, but also the integration cycle,
which plays an important role. To illustrate this point, let us return to (1.7): whilst Im

E
and Im

are examples of motivic periods which are algebraically independent from motivic polylogarithms,
the period per (ImPol) does evaluate to multiple polylogarithms, even though the periods of all three
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objects are integrals involving the same d log-form in the integrand.1 Thus, looking at the integrand
alone is insufficient to decide if an integral can be evaluated in terms of multiple polylogarithms,
and the choice of the integration cycle is important.

Canonical differential equations in dlog-form. It follows from our examples that it is not
clear that families of (dimensionally-regularised) Feynman integrals that satisfy a system of linear
differential equations in ‘canonical d log-form’ (cf. [28]) can always be evaluated in terms of
polylogarithms. Instead, other classes of iterated integrals – such as iterated integrals of modular
forms or multiple elliptic polylogarithms – may also show up even in the case of a differential
equation in ‘canonical d log-form’. This can happen whenever the d log-forms involve algebraic
arguments that cannot be rationalised via a suitable parametrisation of the external kinematic data
(see, e.g., [29, 30] for a review). This situation is known to occur for example in Feynman integrals
contributing to two-loop QED corrections to Bhabbha scattering [31, 32] as well as for the two-loop
mixed QCD-QED corrections to the Drell-Yan process [33, 34]. In [23] it was shown that these
results can be expressed in terms of multiple polylogarithms depending on complicated algebraic
functions of the external kinematic data. Our examples from the previous section show that this
is not the rule, and there is no reason why the same should be true for other integrals that involve
d log-forms depending on square roots that cannot be rationalised.

PlanarN = 4 super Yang–Mills theory. The examples of the previous section may also have
implications on conjectures about the analytic structure of certain special Quantum Field Theories,
like for example the planar N = 4 super Yang-Mills theory. In [35] it was argued that scattering
amplitudes in this theory for certain assignments of the quantum numbers of the external states –
the so-called maximally-helicity-violating (MHV) and next-to-MHV (NMHV) amplitudes – can be
expressed in terms of polylogarithms for any number of loops and external particles. A central
point in the argument is a (conjectural) procedure to write the loop integrand of these amplitudes
in a form which only involves d log-forms. For up to seven external particles, the arguments of
these d log-forms are rational functions obtained from cluster algebras (of finite type) associated to
certain Grassmannian spaces, see, e.g., [36–45]. It is also known that two-loop MHV amplitudes
for any number of external particles can be expressed in terms of polylogarithms [37, 46]. Starting
from eight external particles, however, two-loop NMHV and three-loop MHV amplitudes involve
d log-forms with algebraic arguments [47, 48]. It is currently not known if one can parametrise
the external kinematic data in a way which would rationalise these algebraic arguments (though
it is known that in some cases all contributions from these algebraic arguments cancel in the full
amplitude [49]). As a consequence, conjectures stating that MHV and NMHV amplitudes in planar
N = 4 Super Yang-Mills are always expressible in terms of polylogarithms should be taken with a
pinch of salt: there is no firm supporting evidence, nor a counterexample, for this conjecture beyond
seven particles.
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2. Geometry & Setup

2.1 Geometry

We first consider the geometric situation underlying the integrals (1.4) and (1.5). Let k =
Q(
√
−3) ⊂ C and let ρ = −e2πi/3 ∈ k. Let E ⊂ P2 denote the elliptic curve defined in projective

coordinates (x : y : z) by zy2 = x3 + z3. Let A ⊂ P2 denote the divisor over Q given by the union
of the loci

x2 − xz + z2 = 0 , y − z = 0 , y + z = 0 .

Its extension of scalars Ak = A ×Q k is a union of four lines y = ±z, x = ρz, x = ρz which cross
normally. Let B denote the union of E with the line x = 2z.

The elliptic curve E meets x = ρz at the point (ρ : 0 : 1) with multiplicity two and at the point
at infinity ∞ = (0 : 1 : 0), and similarly with ρ replaced with ρ. It meets the line y = z at the
point (0 : 1 : 1) with multiplicity three, and the line y = −z at (0 : −1 : 1) with multiplicity three
as well. It follows that the points (ρ,0), (ρ,0) (and also (−1,0)), are torsion points of order 2 in the

x = ρ x = ρ x = 2

y = 1

E

(2,3)

(2,−3)

y = −1
(ρ,0)(ρ,0)

(0,1)

(0,−1)

Figure 1: A local picture of the divisors B (red) and the four components of Ak (black) in affine coordinates
(x, y) = (x : y : 1).

group E(k), and the points (0,1), (0,−1) have order 3. The points (2,3), (2,−3) have order 6 since,
for example, x + z = y intersects E at (−1,0), (0,1) and (2,3).

From now on let us denote by Σ the following set of five torsion points

Σ = { (ρ : 0 : 1) , (ρ : 0 : 1) , (0 : 1 : 1) , (0 : −1 : 1) , ∞ } (2.1)

7
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and write E ′ = E\(E ∩ A). Thus E ′
k
= Ek\Σ, where Ek = E ×Q k and likewise for E ′. Let us also

denote by πx, πy the following two projections

πx : P2\{(0 : 1 : 0)} → P1 , πy : P2\{(1 : 0 : 0)} → P1 (2.2)

which map (x : y : z) onto (x : z) or (y : z) respectively. Each restricts to a projection from E\∞
to the affine lines A1 defined by z = 1.
Remark 2.1. The most arithmetically interesting motives typically arise from singular configura-
tions, and the above situation is a case in point. In our example, it happens that the components of
the divisorA are fibers of πx or πy over points where their restrictions to E ′ fail to be étale. For an
elliptic curve in Weierstrass form y2 = x3 + ax + b, this locus is given by

x3 + ax + b = 0 and 27y4 − 54 b y2 + (4a3 + 27b2) = 0 ,

which in our situation leads to y = ±1 and x = ρ, ρ,−1. This remark may provide a way to generate
other interesting examples.

2.2 Modular parametrisation

The elliptic curve E admits the following explicit modular parametrisation by Γ(6)\H. Let τ
be in the upper-half plane H := {τ ∈ C : Im(τ) > 0} and let η(τ) denote the Dedekind η function,

η(τ) = eiπτ/12
∞∏
n=1
(1 − e2πiτn) (2.3)

which satisfies η(1 + τ) = e
iπ
12 η(τ) and η(−τ−1) = η(τ)

√
τ
i .

Consider the following η-quotients:

x6(τ) =
η(2τ) η(3τ)3

η(τ) η(6τ)3
,

y6(τ) =
η(2τ)4 η(3τ)2

η(τ)2 η(6τ)4
,

(2.4)

which are modular invariant for Γ(6). They satisfy the following relation, as can be checked by
computing the first few Fourier coefficients:

y6(τ)
2 = 1 + x6(τ)

3 . (2.5)

Let ϕ : H→ P2(C) denote the map τ 7→ (x6(τ) : y6(τ) : 1). Its image is clearly contained in E(C).
The group Γ(6) has twelve cusps, given by the classes of the points (a : c) ∈ P1(Q), where a, c are
integers modulo the relation (a : c) ∼ (a′ : c′) if a,a′ and c, c′ are congruent modulo 6. Here is a
set of representatives:

0 , 1/3 , 1/2 , 2/3 , 1 , 3/2 , 2 , 5/2 , 3 , 4 , 5 , i∞ .

Using the automorphy properties of η(τ) under SL2(Z) and the fact that every cusp is equivalent to
i∞ under the action by Möbius transformations of SL2(Z), one checks that ϕ extends continuously
to the cusps where it takes, respectively, the following values:

(2 : 3 : 1) , (0 : 1 : 1) , (ρ : 0 : 1) , (0 : −1 : 1) , (−2ρ : −3 : 1) , (−1 : 0 : 1)

8
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(−2ρ : 3 : 1) , (ρ : 0 : 1) , (2 : −3 : 1) , (−2ρ : 3 : 1) , (−2ρ : −3 : 1) , ∞ = (0 : 1 : 0) .

Let C ⊂ E(k) denote these 12 points. It follows that ϕ has degree one on Γ(6)\H and hence induces
an isomorphism ϕ : Γ(6)\H ∼

→ E(C)\C (e.g., [50]).
Observe that all the sets of special points on E in the discussion of the previous paragraph, and

in particular the set Σ, are contained in the set of cusps C.
The pull-back of the holomorphic one-form −3dx/y under ϕ is

ϕ∗
(
−3

dx
y

)
= 2πi dτ f (τ) . (2.6)

where, writing q = e2πiτ/6,

f (τ) = η(τ)4 = q − 4q7 + 2q13 + 8q19 − 5q25 + . . . , (2.7)

is the unique normalised cusp form ofweight two on Γ(6). The pull backs of logarithmic differentials
of the third kind on Ek = E ×Q k with poles along C can be expressed as a k-linear combination of
f (τ) and Eisenstein series of weight two.

2.3 The L-function

Let L( f , s) =
∑

n≥1
an

ns = 1 − 4
7s +

2
13s + . . . denote the L-function associated to f , where

f (q) =
∑

n≥1 anqn. Its completed version is

Λ( f , s) = 3sπ−sΓ(s)L( f , s) ,

and satisfies the functional equation Λ( f , s) = Λ( f ,2− s). One easily computes its numerical value
at the non-critical point s = 2:

Λ( f ,2) = 0.85718907492991773071685111 . . . .

2.4 Interpretations

We shall interpret the integrals in (1.4) and (1.5) in several different ways, as:

1. Multiple modular values, i.e., iterated integrals of modular forms of weight 2 along geodesic
paths between cusps on the modular curve Γ(6)\H, see §6. These are periods of the relative
completion (in this case, the unipotent completion in fact suffices) of the fundamental groupoid
of the modular curve between tangential base points.

2. Multiple elliptic polylogarithms, i.e., iterated integrals on the elliptic curve E ′(C) (periods of
the unipotent completion of its fundamental groupoid).

3. Periods of the mixed Hodge structure associated to a specific configuration of algebraic
varieties such as the one described above.

The relation between (1) and (2) comes about because the elliptic curve E is modular, and because
unipotent completion is a special case of relative completion. In order to understand the relation
between (2) and (3), recall Beilinson’s general construction which associates a motive to the
unipotent fundamental group.

9
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Recall that E ′ = E\Σ. Iterated integrals of length two between two distinct points p,q of E ′

are periods of H2(E ′ × E ′,Y ) where Y = ({p} × E ′) ∪ ∆ ∪ (E ′ × {q}) and ∆ is the diagonal. The
projections (2.2) together define a morphism

πx × πy : E ′ × E ′ −→ A1 × A1 ⊂ P2

which maps the diagonal ∆ to the embedded curve E ′ ⊂ P2. Under this morphism, the variety
E ′ × E ′ maps to the complement of some lines in P2 which contains Ak , and Y maps to a divisor
which contains the elliptic curve E ′ ⊂ P2 together with some further lines which are parallel to the
coordinate axes. In this way, we are naturally led to consider the relative cohomology of geometric
configurations in P2 very similar to the one described in the previous paragraph.

2.5 The ‘motive’

The divisor A ∪ B, even after extension of scalars to k, is not normal crossing, since x = ρz,
x = ρz, E and x = 2z all meet at the point ∞ = (0 : 1 : 0). Therefore let π : P → P2 denote the
blow-up of P2 at the point ∞, and let Ã denote the strict transform of A, and B̃ the total transform
of B.

The divisor Ãk is simple normal crossing, and consists of the strict transforms of y = z, y = −z,
which meet at (1 : 0 : 0), and x = ρz, x = ρz, which do not meet. Their mutual intersections over
k are (1 : 0 : 0) together with:

(ρ : 1 : 1) , (ρ : −1 : 1) , (ρ : 1 : 1) , (ρ : −1 : 1) . (2.8)

D1

D2

x = ρ

x = ρ

D3

Figure 2: A local picture of the blow-up P at the point at infinity. Not all intersections are shown. The
divisor B̃ is pictured in red. The divisor D1 (resp. D2) is an open in the strict transform of E, (resp. x = 2z),
and D3 is an open in the exceptional locus.

The object of study will be the relative cohomology:

M = H2(P\Ã , B̃\B̃ ∩ Ã) . (2.9)

It defines an object in a category of systems of realisations (we will mostly be concerned with Betti
and de Rham cohomology) over Q, since the pair (P\Ã , B̃\B̃ ∩ Ã) is defined over the rationals.
Alternatively, one can retrieve M from the object

Mk = H2(Pk\Ãk , B̃k\B̃k ∩ Ãk) , (2.10)

10
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in a system of realisations over k, together with an action of Gal(k/Q).

Remark 2.2. Note that Ã ∪ B̃ is not simple normal crossing because the curve E meets Ã at points
with multiplicity > 1. One can, if one chooses, blow up P successively at the points of intersection
of E with Ã to obtain a simple normal crossing divisor, and define the motive to be the cohomology
of this new space minus the total transform of Ã, taken relative to the strict transform of B̃. Since the
exceptional divisors are ultimately removed in this procedure, this has no effect on the cohomology
and the resulting motive is identical to M .

3. Calculation of the ‘motive’ M

The following calculations are valid in any reasonable cohomology theory (e.g., singular, or
algebraic de Rham). We shall work in a versionH of Deligne’s category of realisations considered
in particular in [51] §2. The object (2.9) defines an object (called simply a ‘motive’ by abuse of
terminology) inH which is a triple

(MB,MdR,comp)

where MB = H2((P\Ã)(C) , (B̃\B̃ ∩ Ã)(C);Q) is the singular cohomology group, and MdR =

H2
dR
(P\Ã , B̃\B̃ ∩ Ã;Q) is the algebraic de Rham cohomology group associated to (2.9). They

are Q-vector spaces equipped with a weight filtration W (and Hodge filtration F on MdR) and
comp : MdR ⊗ C � MB ⊗ C is the comparison isomorphism. The space MB is also equipped with
a real Frobenius involution F∞ induced by complex conjugation on complex points. This data is
subject to a number of constraints - in particular MB has a Q-mixed Hodge structure.

We shall show that the weight-graded (semi-simple) object associated to M is built out of the
following simple objects in the categoryH :

Q(−2) , Qχ(−1) , H1(E) ,Q(−1) , Q(0) ,

whereQχ is a certain Dirichlet motive (defined below),Q(0) = H0(Spec(Q)), andQ(−1) = H1(Gm).
Here, and subsequently, Hi(X) is shorthand for the object

Hi(X) := (Hi(X(C)),Hi
dR(X),comp)

in the categoryH if X is defined overQ. The notation M(−n) stands for the Tate twist M ⊗Q(−1)⊗n

as usual.

3.1 An Artin motive

Consider the rank two Artin motive of weight zero:

A = H0 (Spec k) .

Via the morphism Spec k → SpecQ, it splits in H into a direct sum A = Q ⊕ Qχ of the trivial
motive and a Dirichlet motive Qχ. After extending coefficients to k, the motive Qχ ⊗Q k (in the
categoryH ⊗Q k) becomes isomorphic to the trivial motive Q⊗Q k. We can interpret the Tate twist
A(−1) of A as the object:

A(−1) = H1(P1\{V(x2 − x + 1),∞}) . (3.1)

11
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Note that P1\{V(x2 − x + 1),∞}) � P1\{V(x3 + 1)}) via the map y 7→
y+1
2−y .

The de Rham realisation A(−1)dR of (3.1) is the 2-dimensional Q-vector space generated by
the cohomology classes of the forms

dx
x2 − x + 1

and
(2x − 1) dx
x2 − x + 1

= d log(x2 − x + 1) ,

which generate Qχ(−1)dR and Q(−1)dR respectively. The Betti realisation A(−1)B is the 2-
dimensional Q-vector space generated by classes of loops σρ, σρ winding positively around ρ, and
ρ respectively. Since the real Frobenius F∞ acts via F∞[σρ] = −[σρ], and F∞ acts on Q(−1)B by
−1, we deduce that Qχ(−1)B is spanned by [σρ] − [σρ], which is F∞-invariant. The period matrix
of Qχ(−1) is therefore the (1 × 1) matrix(∫

σρ−σρ

dx
x2 − x + 1

)
=

(
4πi
3
(ρ − ρ)

)
=

(
−

4π
√

3

)
,

with respect to the above bases.

Remark 3.1. For computations, it will be convenient to consider not the object M in the category
H but rather the object Mk defined in (2.10) in a category Hk of realisations of objects over
k. The object M is retrieved from Mk together with the data of an action of Gal(k/Q) on the
components of Mk . The essential difference with H is that the category Hk consists of triples
((Mσ)σ,MdR, (compσ)σ) where Mσ are Q-vector spaces for every embedding σ : k ↪→ C, and
MdR is a finite-dimensional k-vector space, satisfying similar compatibilities to those considered
before. There are two isomomorphisms compσ : MdR ⊗k ,σC

∼
→ Mσ ⊗QC, one for each embedding

σ of k. The natural functor H → Hk sends (MB,MdR, c) to ((MB)σ,MdR ⊗ k, (c ⊗ σ)σ). The
simple objects Q(−n),H1(E) in H correspond to objects in Hk with a trivial Gal(k/Q) action,
but the object Qχ corresponds to the trivial object Q in Hk equipped with a non-trivial action of
Gal(k/Q). This action is given by the usual (semi-linear) Galois action on its de Rham component
MdR = k, and permutes the two Betti components Mσ and the two maps cσ .

3.2 Preliminary calculations

Lemma 3.2. As an object ofH , we have:

Hn(P\Ã) =


Q(0) if n = 0 ,
Q(−1) ⊕ Qχ(−1) if n = 1
Q(−2) ⊕ Qχ(−2) if n = 2 ,

and vanishes for n ≥ 3.

Proof. We work for now with objects in Hk equipped with a Gal(k/Q)-action. From the formula
for the cohomology of a blow-up, the odd degree cohomology of Pk vanishes, and one has (as
objects ofHk)

H0(Pk) = Q(0) , H2(Pk) = Q(−1) ⊕ Q(−1) , H4(Pk) = Q(−2) .

12



P
o
S
(
M
A
2
0
1
9
)
0
0
5

A double integral of dlog forms which is not polylogarithmic

The group Gal(k/Q) acts trivially. The divisor Ãk is normal crossing in the smooth proper
scheme Pk , and consists of 4 lines L1, . . . , L4 meeting at 5 points given by the inverse images
under π of the four points (2.8) and the point (1 : 0 : 0). For any subset I ⊂ {1, . . . ,4} let
LI = ∩i∈I Li. We set L∅ = Pk . A Gysin (residue) spectral sequence [52] in the category Hk

has E−p,q1 =
⊕
|I |=p Hq−2p(LI )(−p) and converges to grWq Hq−p(P\L). The differentials are the

alternating sums of Gysin morphisms. Writing this out:

Q(−2)⊕5 → Q(−2)⊕4 → Q(−2)

Q(−1)⊕4 → Q(−1)⊕2

Q(0)

All zero entries have been omitted and in particular all rows with odd degrees are zero. The
right-most column is the cohomology of Pk , the middle column the cohomology of the union of
one-dimensional strata Li with degrees shifted by 2, and the left-most column that of the five points
which constitute the codimension two strata in Ãk , with degrees shifted by 4. The kernel of the map
in the second row computes grW2 H1(Pk\Ãk), which has rank 2. This is because themiddle row of the
right-most column is H2(Pk) which is generated by the fundamental class of a generic hyperplane
(say y = z) and the exceptional divisor. Since the hyperplane x = ρz meets the exceptional divisor,
the map in the second row is surjective and its kernel has rank 2. By proceeding in this way, or
noting that Pk\Ãk is affine (which implies that its cohomology vanishes in degrees ≥ 3, and so
the top row of the previous diagram has all cohomology concentrated in the left-most column) we
conclude that

H0(Pk\Ãk) = Q(0) , H1(Pk\Ãk) = Q(−1)⊕2 , H2(Pk\Ãk) = Q(−2)⊕2 ,

as objects ofHk . The group Gal(k/Q) permutes the two lines x = ρz and x = ρz, from which one
deduces its action on H1 and H2 and gives the stated formula. �

In algebraic de Rham cohomology, H1
dR
(P\Ã) is generated by the classes of the pullbacks

under π∗ of the logarithmic one-forms

ωy = d log(y + z) − d log(y − z) , (3.2)

where π : P→ P2 is the blow-up, and

ωx =
zdx − xdz

x2 − xz + z2 =
1

ρ − ρ
(d log(x − ρz) − d log(x − ρz)) , (3.3)

where [π∗ωx] generates Qχ(−1)dR and [π∗ωy] generates Q(−1)dR in H1(P\Ã). The class of
[π∗(ωy ∧ ωx)] generates the copy of Qχ(−2)dR in H2(P\Ã).

3.3 Face maps

The divisor B̃k\Ãk is simple normal crossing with three smooth components which are the
strict transforms of:

(D1)k = E
′
k = Ek\Σ

13
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where Σ was defined in (2.1); and

(D2)k = P
1
k\{(2 : 1 : 1), (2 : −1 : 1)} ,

which corresponds to the line {x = 2z} which meets A along y = ±z; together with the inverse
image of the exceptional divisor, which is isomorphic to

(D3)k = P
1
k\{ρ, ρ} .

They are the extension of scalars to k of three divisors D1,D2,D3 over Q which meet each other as
depicted in figure 2 (for example, D1 is the strict transform of E\(E ∩ A), and D3 = P

1\V(x2 −

xz + z2).)
For each i = 1,2,3 there are ‘face maps’ [51], §10.3:

fi : H1(Di,Di j ∪ Dik) −→ M (3.4)

where {i, j, k} = {1,2,3} and Dpq = Dp ∩ Dq.

Lemma 3.3. Since D1,D2,D3 are over Q, they define the following objects ofH :

H1(D1) � H1(E) ⊕ Q⊕3(−1) ⊕ Qχ(−1) ,

whereas H1(D2) = Q(−1) and H1(D3) = Qχ(−1). Their respective H2’s all vanish.

Proof. We first work in the category Hk . The cohomology of (D1)k is given by a Gysin (residue)
sequence:

0 −→ H1(Ek) −→ H1((D1)k) −→ H̃0(Σ)(−1) � Q(−1)⊕4 −→ 0

where the Q(−1) on the right are objects of Hk . The previous sequence splits by the Manin-
Drinfeld theorem, since the points removed from Ek are cusps (a splitting is provided by the
action of Hecke operators). The first statement follows since Gal(k/Q) acts trivially on the points
(0 : 1 : 0), (0 : ±1 : 1), but permutes (ρ : 0 : 1) and (ρ : 0 : 1). Since D1,D2,D3 are affine, their
cohomology in degrees 2 and above vanish. The second statement follows from D2 � Gm, and
(D3)k = P

1\{ρ, ρ}. �

3.3.1 Computation of M

We use the well-known relative cohomology spectral sequence in the categoryH . It satisfies:

Ep,q
1 =

⊕
|I |=p

Hq(DI ) =⇒ Hp+q
(
P\Ã, B̃\

(
B̃ ∩ Ã

))
where Di for i ∈ {1,2,3} denote the affine schemes above, D∅ = P\Ã and for every non-empty
subset I ⊂ {1,2,3}, we write DI = ∩i∈I Di. The differentials are given by signed sums of restriction
maps.

Proposition 3.4. The weight-graded pieces of M are:

grW M = Qχ(−2) ⊕ Q(−2) ⊕ Qχ(−1) ⊕ Q(−1)⊕3 ⊕ H1(E) ⊕ Q(0)⊕2 . (3.5)
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More precisely, we have M = W4M , grW3 M = 0, and

M/W2M � grW4 H2(P\Ã) = Qχ(−2) ⊕ Q(−2) .

Its weight two part splits into a direct sum

W2M � H1(E) ⊕ T , (3.6)

where T is an extension:

0 −→ Q(0)⊕2 −→ T −→ Q(−1)⊕3 ⊕ Qχ(−1) −→ 0 .

Proof. We can work inH . The first page of the spectral sequence is

Qχ(−2) ⊕ Q(−2) → 0 → 0
Qχ(−1) ⊕ Q(−1) → H1(E) ⊕ Qχ(−1)⊕2 ⊕ Q(−1)⊕4 → 0

Q(0) → Q(0)⊕3 → Q(0)⊕4
.

The column on the far left is given by lemma 3.2. The column on the far right is the cohomology
of the union of the pairwise intersections Di ∩ Dj , which consists of 4 points. The structure (3.5)
follows from the fact that the left-most differential in the middle row is injective (for example,
one can check that the classes [π∗ωx] and [π∗ωy] restrict to non-trivial classes in the de Rham
cohomology of D3, and D2 respectively). Next, by taking the quotient by W2 in the natural map
M → H2(P\Ã) we obtain the second statement. Now, since P\A is affine, we know by [51]
proposition 10.7 (or by inspection of the spectral sequence above) that the sum of the face maps is
surjective. In other words, the map∑

i

fi :
3⊕
i=1

H1(Di,Di j ∪ Dik) −→ W2M

is surjective, where, in the above sum, j, k are chosen such that {i, j, k} = {1,2,3}. In particular
W2M is a quotient of this direct sum. To obtain the splitting (3.6), it suffices to show that H1(E) is
a summand of:

H1(D1,D12 ∪ D13) ,

which follows again from the Manin-Drinfeld theorem since D12,D13 correspond to cusps on E.
One can also prove this fact by direct application of Hecke operators to H1(D1,D12 ∪ D13). It
follows from this that H1(E) is a summand in W2M .

We conclude that W2M = H1(E) ⊕ T for some object T ofH whose weight-graded pieces are
Tate or of the form Qχ(−1). That it is an extension of the stated form follows from (3.5). �

Consider the exact sequence

0 −→ W2M −→ M −→ Q(−2) ⊕ Qχ(−2) .

We can pull it back to a simpler object N → M , which sits in an exact sequence

0 −→ W2M = W2N −→ N −→ Qχ(−2) −→ 0 . (3.7)
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By (3.6), this extension can in turn be pushed out to a simple extension:

0 −→ H1(E) −→ N1 −→ Qχ(−2) −→ 0 (3.8)

and a biextension of the form

0 −→ T −→ N2 −→ Qχ(−2) −→ 0 . (3.9)

The Hodge numbers of N2 are of Tate type.

3.4 The motivic periods

Consider the form

ω = ωx ∧ ωy =
1

ρ − ρ
d log

(
x − ρz
x − ρz

)
∧ d log

(
y + z
y − z

)
(3.10)

Its restriction to the affine chart z = 1 is

ω
��
z=1 =

2 dx ∧ dy
(x2 − x + 1)(1 − y2)

.

It defines a cohomology class [π∗ω] ∈ F2MdR whose image in H2(P\Ã) spans the copy of
Qχ(−2)dR. Given any relative homology class [σ] ∈ M∨B , we can consider the motivic period
defined by the matrix coefficient ([51] §2):

ξ = [M, [σ], [π∗ω]]m .

Its image under the period homomorphism is the period

per ξ =
∫
σ
ω .

If the class σ is invariant (resp. anti-invariant) under F∞ then the associated period is real (imagi-
nary). We shall mainly consider two examples of real periods.

4. Relative homology classes in M∨B

4.1 Frobenius-invariant chains

Recall that the Betti component MB of an object M in H comes with an action of the real
Frobenius F∞. Since it acts on H1

B(E) with eigenvalues +1 and −1, it follows from (3.5) and the
definition of N that the + eigenspace for the action of F∞ on NB has dimension 4. Each eigenspace
comes from the Betti component of a weight-graded piece Q(0)⊕2,Qχ(−1) and H1(E) in (3.5). In
particular, since F∞ acts via −1 on Qχ(−2)B, we have

N+B = W2N+B = W2M+B
(3.6)
= H1(E)+B ⊕ T+B . (4.1)

Here, a superscript ± refers to corresponding eigenspace under F∞. Let [σE] ∈ (N+B)
∨ denote the

image of a generator of the Frobenius-invariant part of the singular homology H1(E(C))
+ of the

elliptic curve E(C).
We first discuss how to obtain relative homology classes from paths, before writing down a

representative for the class [σE] explicitly.
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4.2 Paths and relative homology classes

The periods we wish to consider are iterated integrals of logarithmic one-forms along paths in
E(C). We now explain how these paths define relative homology classes in M∨B .

The projection πx extends to a double covering E → P1 by sending (0 : 1 : 0) to the point at
infinity. It is ramified at ∞ and cube roots of −1. The image of Σ (2.1) are the points {0, ρ, ρ,∞}.
Consider any continuous path

γ : (0,1) → P1(C)\{0,−1, ρ, ρ,∞} ,

which extends to a continuous path γ : [0,1] → P1(C) with the property that γ(0) ∈ {2,∞} and
γ(1) = ∞. Such a path, together with the data of a determination of

√
x3 + 1 at any point γ(t) for

0 < t < 1 defines a path on E(C) whose endpoints are contained in the set {(2 : 3 : 1), (2 : −3 :
1),∞}. The latter are the points of intersection of E and x = 2z (i.e., the dimension 0 strata of the
divisor B).

4.2.1 Chains constructed from paths

Given γ as above, consider the singular 2-chain p(γ) defined by the map

{0 < t1 < t2 < 1} −→ P2(C)

(t1, t2) 7→
(
γ(t1) :

√
γ(t2)3 + 1 : 1

)
where the determination of the square root is uniquely determined from the defining data by analytic
continuation along γ. Denote by p̃(γ) = π−1(p(γ)) the closure in the analytic topology of the inverse
image of p(γ) under π : P(C) → P2(C). Since γ avoids 0 and the three cube roots of −1, it follows
that p̃(γ) does not meet A(C). Its boundary is contained in the locus B(C) by assumption on the
endpoints of γ: the boundary component corresponding to t1 = t2 is contained in the elliptic curve
E(C), and those corresponding to t1 = 0 and t2 = 1 are contained in the exceptional divisor or the
inverse image x = 2z. Thus we have shown:

Lemma 4.1. The chain p̃(γ) defines a relative homology class

[p̃(γ)] ∈ M∨B .

Consider the following examples:

1. The straight-line path γ2,∞ from 2 to∞ which is contained in the real axis, together with the
positive root of x3 + 1. The chain p(γ2,∞) is

{(x : y : 1) : 2 < x , 3 < y , x3 + 1 < y2} ⊂ P2(R) .

The closure of its inverse image in P(R) defines a relative homology cycle whose class
[p̃(γ2,∞)] ∈ M∨B which is invariant under F∞.
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2. Let γ∞,−1 denote a path (together with the positive square root of x3 + 1 initially) which
travels along the real axis from ∞ to a point close to 0 around which it traverses in a small
semi-circle, before continuing on to a point near −1 along the real axis. After winding around
−1, it returns back towards infinity, this time passing around 0 on the opposite side. The sign
of
√

x3 + 1 is negative on the return path. Let γ∞,−1 denote the complex conjugate path (but
equipped with the same, initially positive, determination of the square root of x3 + 1). The
linear combination

1
2

(
[p̃(γ∞,−1)] + [p̃(γ∞,−1)]

)
is invariant under F∞. It is not zero because we are working with paths in the elliptic curve,
or, ‘loaded’ paths on the punctured sphere with coordinate x.

There are many other paths which one might consider, including paths from x = 2 to∞which wind
around the singularities 0, or ρ and ρ.

∞0−1

ρ

ρ

2
γ∞,−1

Figure 3: The path γ∞,−1 in C\{0,−1, ρ, ρ} relative to the two points {2,∞} (red). The punctured elliptic
curve is a double cover, ramified at the additional point −1.

4.3 The elliptic extension

The class [σE] can be represented as follows. Start with the real locus E(R) (oriented in the
positive y direction) and deform it by small semi-circles around the points (0 : ±1 : 1) so that it
avoids A ∩ E as shown in figure 4; the upper line depicts its image under πy . The resulting chain c
is not invariant under complex conjugation, but 1

2 (c+ c) is a representative for a Frobenius invariant
path in H1(E\(E ∩ A)(C)). It can be viewed as the path given by the real locus E(R) away from
(0 : ±1 : 1) which bifurcates into two ‘half-paths’ near each point (0 : ±1 : 1) - each half-path
traces a semi-circle on either side of the puncture which meet on the other side. We can view
E(C) ⊂ P(C). By lemma 3.2, the images of c and c vanish in H1(P\Ã) (for instance, the integrals
of π∗ωy , π∗ωx vanish along them) and so there exists a singular two-chain σE in (P\Ã)(C) such
that ∂σE = 1

2 (c + c). Since the boundary of σε is contained in the divisor B(C), it defines a relative
homology class in M∨B .

The integral of π∗(ω) (3.10) along σE can be computed as follows. Consider the primitive

F = −ωx log
(
y + z
y − z

)
of ω. It satisfies dF = ω. By Stokes’ formula, and the fact that ∂σε = 1

2 (c + c),∫
σE

π∗(ω) =

∫
1
2 (c+c)

F
���
E
= Re

∫
c

F
���
E
.
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y = ∞y = 1y = −1

Figure 4: A singular chain in A1\{±1} given by the sum of the classes of the two paths shown. It is the
image of a Frobenius-invariant path on E(C) under the projection πy : E → P1.

The last part follows from the fact that the chain of integration is Frobenius-invariant and hence the
integral is real. The integrand, in the coordinate y, is

F
���
E
= −

2
3

(
x + 1

x2

)
log

(
y + 1
y − 1

)
dy
y

where x = 3
√
y2 − 1 is the branch given by the real root for y large on the real axis.

4.3.1 Reformulation

Since the real part of the integrand is anti-invariant under the involution y 7→ −y, it suffices to
integrate along the segment of c from y = 0 to infinity. The point y = 0 corresponds to the point
x = −1, which does not play any role in the definition of the motive M , but this does not matter.
Writing the previous integral using the x coordinate gives∫

σE

π∗(ω) = −2 Re
∫ ∞

−1

dx
x2 − x + 1

log

(√
x3 + 1 + 1
√

x3 + 1 − 1

)
= −2

∫ 0

−1

dx
x2 − x + 1

log

(
1 +
√

x3 + 1
1 −
√

x3 + 1

)
+ (4.2)

−2
∫ ∞

0

dx
x2 − x + 1

log

(√
x3 + 1 + 1
√

x3 + 1 − 1

)
< 0 .

Each integral converges (since it is an integral on a compact domain with boundary, and has at
worst logarithmic singularities on the boundary: see [53], §4.4) and is negative. The image of the
path c under the projection πx is equivalent to the path γ∞,−1 depicted in figure 3.

Remark 4.2. Each integral in (4.2) can be interpreted as a multiple modular value §6, since they
are regularised double integrals of modular forms between cusps. They can also be interpreted as
multiple elliptic polylogarithms: i.e., an iterated integral of the two logarithmic forms ωx , ωy along
a path in (E\Σ)(R) between tangential basepoints based at Σ.

5. Two motivic periods which are not polylogarithmic

5.1 A mixed-elliptic period

Consider the motivic period

ImE := [N, [σE], [π∗ω]]m .
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It is equivalent, via the morphism r : N → N1 (see (3.8)) to the motivic period

[N1, [σE],rdR [π
∗ω]]m

of N1, since [σE] is by construction in the image of r∨B : (N∨1 )B → N∨B (denoted with the same
symbol). Its period is therefore an F∞-invariant period of the simple extension N1. We have just
shown that it is negative, and hence non-zero:

per
(
ImE

)
= IE < 0 .

We now show that this is precisely the obstruction to being a polylogarithmic motivic period.

5.1.1 Non-triviality of the extension

Lemma 5.1. The extension N1 does not split.

Proof. If one had N1 � H1(E) ⊕ Qχ(−2), i.e., N1 were to split in H , then Im
E
would be a sum

Im1 + Im2 where Im1 , Im2 are motivic periods of H1(E), Qχ(−2), respectively. Because Im
E
is real

(F∞-invariant), we can assume that the same is true of both Im1 , I
m
2 . But since F∞ acts via −1 on

Qχ(−2)B, the object Qχ(−2) has no non-trivial real periods and so Im2 = 0. Therefore Im = Im1
is a motivic period of H1(E). Furthermore, it has Hodge filtration F2, but since F2H1

dR
(E) = 0,

we must have Im = 0. Therefore if N1 were to split then Im
E
would vanish and so would its period

IE = per
(
Im
E

)
, a contradiction. �

Corollary 5.2. Themotivic period Im
E
is algebraically independent over the motivic periods of mixed

Artin-Tate objects inH . In particular, it is not equivalent to a polylogarithmic motivic period.

Proof. Since the extension N1 is non-split, the unipotent radical of the de Rham Galois group
GdR
H
= Aut⊗

H
ωdR, where ωdR is the de Rham fiber functor, acts non-trivially on its de Rham

realisation and also on the motivic period Im
E
. It therefore admits a Galois conjugate ξ = (g − id)Im

E

for some g ∈ GdR
H
(Q), where ξ is a non-zeromotivic period of H1(E). Wemaywrite ξ = αω++β η+

where α, β ∈ Q are not both zero and ω+, η+ are real (i.e., F∞-invariant) motivic periods of H1(E)

of Hodge types (1,0) and (0,1) respectively (see [51] for definitions). Since Artin-Tate objects inH
are all of Hodge type (p, p), the element ξ is algebraically independent over the ring Pm

AT generated
by their motivic periods. Suppose by contradiction that Im

E
is algebraic over Pm

AT , and thus satisfies
an equation P(Im

E
) = 0 where P = anxn + . . . + a0 ∈ P

m
AT [x] is a polynomial with coefficients

in Pm
AT and an , 0. Since the ring Pm

AT is stable under GdR
H

, we can apply g to P(Im
E
) to deduce

a non-trivial polynomial equation for ξ of the form g(an)ξn + . . . = 0 whose coefficients are in
Pm

AT [I
m
E
], since g(an) , 0. Since a composition of algebraic extensions is algebraic, it follows that

ξ is algebraic over Pm
AT , a contradiction. �

In fact, the period IE is proportional to the regulator of the extension. By Beilinson’s conjecture
it is predicted to be a special value of the L-function of the elliptic curve at 2 and indeed we find
numerically to many digits that

IE
·
= −4 π

√
3Λ( f ,2) . (5.1)

In §6 we discuss a way of computing the left-hand side to high precision.

20



P
o
S
(
M
A
2
0
1
9
)
0
0
5

A double integral of dlog forms which is not polylogarithmic

5.2 A mixed Artin-Tate-elliptic period

Let us now consider the locus

σ = {(x : y : 1) : x > 2,3 < y, x3 + 1 < y2} ⊂ P2(R)

which is the chain p(γ2,∞) considered earlier. The closure p̃(γ2,∞) of its pull-back to P(C) defines
a relative homology cycle whose class [p̃(γ2,∞)] ∈ M∨B is invariant under F∞. We shall denote it
simply by [σM ]. Consider the motivic period

Im = [M, [σM ], [π
∗ω]]m .

Its period is given by the following integral along the path γ2,∞:

per
(
Im

)
=

1
ρ − ρ

∫
2≤x1≤x2≤∞

d log
(

x1 − ρ

x1 − ρ

)
∧ d log

©«
√

x3
2 + 1 + 1√

x3
2 + 1 − 1

ª®®¬ (5.2)

where the square roots are positive. Since the class of [π∗ω] spans the copy of Qχ(−2)dR in
grW4 MdR, the natural map N → M (see (3.7)) defines an equivalence of motivic periods

Im = [N, [σM ], [π
∗ω]]m ,

where, by abuse of notation, [σM ] also denotes its image in M∨B → N∨B . By (4.1), there exists a
rational number λE ∈ Q such that

[σM ] = λE[σE] + [σT ] ,

where [σE] is the elliptic class considered earlier, and [σT ] ∈ T∨B is some relative homology class
in the Artin-Tate object T . It follows that Im is a sum:

Im = λE ImE + ImPol , (5.3)

where
ImPol = [T, [σT ], [π

∗ω]]m

is a period of an Artin-Tate motive T . One can presumably show that ImPol is a linear combination of
motivic dilogarithms and logarithms, as the notation suggests, although we have not done this.

It remains to compute the coefficient λE . The boundary component of [σM ] which lies in
E(C)\Σ (i.e., its image under the dual of the Betti component of the face map (3.4) for i = 1) is
the path α from (2,3) to ∞ in E(C). We can check (by using the relations obtained by intersecting
E with the lines x = 2z, x + z = y and y = z − 2x) that the orbit of the point at infinity ∞ under
multiplication by (2,−3) in the group law of the elliptic curve is:

∞ 7→ (2,−3) 7→ (0,−1) 7→ (−1,0) 7→ (0,1) 7→ (2,3) 7→ ∞ .

It follows that 6α is homotopic to the path from y = −∞ to y = ∞, which is the Frobenius-invariant
homology generator on E(C) considered in §4.3. Therefore,

λE =
1
6
.

In particular, λE is non-zero, and since ImPol is Artin-Tate, we deduce the
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Corollary 5.3. The motivic period Im is algebraically independent over the space of mixed Artin-
Tate motivic periods. In particular, it is algebraically independent from motivic polylogarithms at
algebraic points.

The period conjecture, in the weak version stated in [51], Conjecture 1, implies that the period
homomorphism from the ring of motivic periods of H to C is injective. If true, as expected, then
it implies that the integrals I and IE are algebraically independent from values of polylogarithms at
algebraic arguments.

Remark 5.4. The above discussion involved no numerical or analytic calculations, only the negativity
of the integral IE to exhibit a non-trivial extension class. In general, the underlying geometry, via
the theory of motivic periods, enables one in principle to predict completely the types of numbers
one expects to obtain.

6. Double Eisenstein integrals and L-values of cusp forms

6.1 Eisenstein series on Y (6)

Every Eisenstein series of weight n ≥ 2 for Γ(6) is a linear combination of the following
series [54]:

H(n)r ,s(τ) =
∑

(α,β)∈Z2

(α,β),(0,0)

eiπ(sα−rβ)/3

(α + βτ)n
, 0 ≤ r, s < 6 . (6.1)

This series is absolutely convergent, unless n = 2, in which case the ‘Eisenstein summation’
convention is understood. In Appendix A we show how to express differentials with logarithmic
singularities at the cusps in terms of these Eisenstein series and the cusp form f .

6.2 Double Eisenstein integrals

We can use the modular parametrisation of E to write the iterated integral of (5.2) as an iterated
integral onY (6). Changing variables from x to τ using (2.4) and using the relations in Appendix A,
we find

ϕ∗d log
(

x − ρ
x − ρ̄

)
=

dτ
2πi

E1(τ) ,

ϕ∗d log

(
1 +
√

1 + x3

1 −
√

1 + x3

)
=

dτ
2πi

E2(τ) ,

(6.2)

where E1(τ) and E2(τ) are the following linear combinations of Eisenstein series of weight two:

E1(τ) = 2 H(2)1,2(τ) − H(2)0,2(τ) − 2 H(2)1,4(τ) − H(2)2,0(τ) − 2 H(2)2,2(τ) ,

E2(τ) = 3 H(2)1,0(τ) − 2 H(2)0,3(τ) + 6 H(2)1,3(τ) − H(2)3,0(τ) .
(6.3)

We can then recognise the integral in (5.2) as a double iterated integral of Eisenstein series:

I =
1

ρ − ρ̄

∫
0≤t1≤t2≤∞

dt1 ∧ dt2
(2π)2

E1(it1) E2(it2) , (6.4)
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In general, iterated integrals of Eisenstein series may diverge at the cusps. These divergences can
be regularised by replacing the cusps by a suitable a tangential base point at a cusp. See [26] for a
more detailed discussion.

In [26] it was shown that for small weights double Eisenstein integrals for the full modular
group Γ(1) can be evaluated in terms of multiple zeta values. The first obstruction to multiple zeta
values appears in weight 12. The first cusp form for Γ(1) also appears in weight 12, and it was
shown in [26] using the Rankin-Selberg method that certain double Eisenstein integrals in weight
twelve also evaluate to the first non-critical L-value of this cusp form.

In the present setting we are dealing with Eisenstein series for the subgroup Γ(6). One expects
that in lowweights double Eisenstein integrals for Γ(6) evaluate tomultiple polylogarithms evaluated
at sixth roots of unity, as well as periods of simple extensions of motives of cusp forms, which, by
Beilinson’s conjecture, should include the critical values of the associated L-functions. Since Y (6)
has genus one, the first cusp form f (τ) for Γ(6) appears in weight two.

6.3 Numerical evaluations

It is easy to evaluate the integral in (6.4) numerically to several hundred digits. Using the
PSLQ algorithm, we can find a linear combination ofΛ( f ,2) and multiple polylogarithms evaluated
at sixth roots of unity that agree with the numerical value of I to (at least) 200 digits. We find:

I = −
2 π
√

3
Λ( f ,2) +

5
√

3
Cl2

(π
3

)
, (6.5)

with Cl2
(
π
3
)
= Im Li2(eiπ/3). We can use a similar approach to obtain an expression for the integral

IE from §5.1 in terms of the same set of transcendental numbers. We find:

IE = −4 π
√

3Λ( f ,2) , (6.6)

where
Λ( f ,2) =

∫ ∞

0
f (it)t2 dt

t
= 0.85718907492991773071685111 . . . . (6.7)

was the completed L-value of f . Comparing (6.5) and (6.6) with (5.3) we find that

IPol =
5
√

3
Cl2

(π
3

)
. (6.8)

While the results obtained here are based on high-precision numerical evaluations and the PSLQ
algorithm, one can doubtless deduce an exact proof by viewing this integral as a double iterated
integral of modular forms between cusps (remark 4.2), and applying the Rankin-Selberg method to
iterated integrals along the lines of [25] and [27] §9.

A. Differential forms on E\C with logarithmic singularities

In this appendix we give the explicit expression for differential forms on Ek\C with logarithmic
singularities. Since Ek\C is an elliptic curve with 12 points removed, the first de Rham cohomology
group of Ek\C is generated by the classes of the holomorphic differential −3 dx

y , a differential of
the second kind, and 11 differentials with logarithmic singularities at the points of C.

23



P
o
S
(
M
A
2
0
1
9
)
0
0
5

A double integral of dlog forms which is not polylogarithmic

Under the modular parametrisation ϕ : Γ(6)\H→ E\C the holomorphic differential pulls back
to the unique normalised cusp form f (τ) of weight two for Γ(6), see (2.6). The differentials with
logarithmic singularities pull back to a linear combination of the cusp form and Eisenstein series
of weight two. Every Eisenstein series of weight n for Γ(6) is a linear combination of the series
in (6.1), and a linear independent set for n = 2 is obtained for [54]:

(r, s) ∈ {(0,1), (0,2), (0,3), (1,0), (1,1), (1,2), (1,3), (1,4), (2,0), (2,2), (3,0)} .

We now describe how to write the logarithmic differentials in terms of Eisenstein series and
the cusp form of weight two. As an example, let us consider the differential dx

y x , where we have
chosen the positive branch of the square root so that y =

√
1 + x3. We have

ϕ∗
dx
y x
= dτ

∂τ x6(τ)

y6(τ) x6(τ)
= −

2πi
3

dτ
[
q3 − 5q9 + 6q15 + 8q21 + . . .

]
,

with q = e2πiτ/6 and x6(τ) and y6(τ) are given in (2.4). By comparing the first few terms of this
q-series to the q-expansion of a generic linear combination of f (τ) and a linear independent set of
Eisenstein series of weight two, we find that

ϕ∗
dx
y x
=

dτ
2πi

[
2
3

H(2)0,3(τ) − H(2)1,0(τ) − 2H(2)1,3(τ) +
1
3

H(2)3,0(τ)

]
.

All other cases can be obtained in a similar way, and we find:

ϕ∗
dx
x
=

dτ
2πi

[
3H(2)1,0(τ) + H(2)3,0(τ)

]
,

ϕ∗
dx

(x − 2)y
=

dτ
2πi

[
−

2
3

H(2)0,1(τ) −
2
9

H(2)0,3(τ) +
1
3

H(2)1,0(τ) +
1
3

H(2)1,2(τ) +
1
3

H(2)1,4(τ)

−
1
9

H(2)3,0(τ) −
4π2

9
f (τ)

]
,

ϕ∗
dx

x − 2
=

dτ
2πi

[
−H(2)0,2(τ) + H(2)1,0(τ) − H(2)1,2(τ) − H(2)1,4(τ) + H(2)2,0(τ)

+H(2)3,0(τ)
]
,

ϕ∗
dx

y(x + 2ρ)
=

dτ
2πi

[
4π2

9
ρ̄ f (τ) −

2
9

H(2)0,3(τ) +
2
3

H(2)1,1(τ) +
1
3

H(2)1,4(τ) −
1
9

H(2)3,0(τ)

]
,

ϕ∗
dx

x + 2ρ
=

dτ
2πi

[
2H(2)1,0(τ) + H(2)1,4(τ) + H(2)2,0(τ) − H(2)2,2(τ) + H(2)3,0(τ)

]
,
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ϕ∗
dx

y (x + 2ρ̄)
=

dτ
2πi

[
4π2

9
ρ f (τ) +

2
3

H(2)0,1(τ) −
2
9

H(2)0,3(τ) −
2
3

H(2)1,0(τ) −
2
3

H(2)1,1(τ)

−
1
3

H(2)1,2(τ) −
2
3

H(2)1,3(τ) −
2
3

H(2)1,4(τ) −
1
9

H(2)3,0(τ)

]
,

ϕ∗
dx

x + 2ρ̄
=

dτ
2πi

[
H(2)0,2(τ) + 2H(2)1,0(τ) + H(2)1,2(τ) + 2H(2)2,0(τ) + H(2)2,2(τ)

+H(2)3,0(τ)
]
,

ϕ∗
dx

x + 1
=

dτ
2πi

[
−H(2)0,2(τ) + 4H(2)1,0(τ) + 2H(2)1,2(τ) + 2H(2)1,4(τ) + H(2)2,0(τ)

]
,

ϕ∗
dx

x − ρ
=

dτ
2πi

[
2H(2)1,0(τ) − 2H(2)1,4(τ) + H(2)2,0(τ) − H(2)2,2(τ)

]
,

ϕ∗
dx

x − ρ̄
=

dτ
2πi

[
H(2)0,2(τ) + 2H(2)1,0(τ) − 2H(2)1,2(τ) + 2H(2)2,0(τ) + H(2)2,2(τ)

]
.
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