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Appell-Lauricella’s hypergeometric functions and intersection theory

1. Introduction

Gauss’ hypergeometric function is defined by

(o)

»Fi(a, b,c; x) = Z %x”,
n=0 n n

where x € C is a variable, a, b, ¢ € C are parameters (¢ ¢ Z<p), and we set (@), = a(a +1)---(a +
n—1) = I'(a + n)/T'(a). This series converges on {x € C | |x|] < 1}. It is well-known that
2Fi(a, b, c; x) satisfies the hypergeometric differential equation

d? d
x(1=-x)—+(c—-(a+b+1)x)— —ab| f(x) =0,

dx? dx

and that if Re(a), Re(c — a) > 0, then »Fi(a, b, c; x) admits an Euler-type integral representation:

I'(c) b c—a _, dt
Fare—a J, ©A- 00 =07m—5

2Fi(a, b, c;x) = ey
As classical generalizations of , F}, Lauricella’s multi-variable hypergeometric functions Fy4, Fp,
Fc and Fp are well-known. These are also called Appell’s hypergeometric functions when they are
in two variables.

The hypergeometric function , /] and its generalizations are studied from various view points.
In this article, we study them by applying the intersection theory for twisted homology and cohomol-
ogy groups. Twisted (co)homology groups are associated with local systems defined by multi-valued
functions that are integrands of Euler-type integral representations. For example, when we consider
»F1, we use the local system defined by the multi-valued function r¢(1 — £)~*(1 — xt)~? in t which
appears in (1). Aomoto applied such homology and cohomology groups to study of hypergeometric
functions.

Intersection pairings of (co)homology groups with coefficients in local systems were defined
in [16]. However, since these definitions are written in terms of homological algebra, it seems
not easy to evaluate the intersection numbers directly. By [9], intersection numbers of twisted
homology groups can be evaluated in terms of topological intersection numbers and branches of
the multi-valued function. By [2] and [12], intersection numbers of twisted cohomology groups are
expressed by residues of logarithmic forms.

The intersection theory for twisted homology groups are applied to study of the monodromy
representations, connection problems, and so on. That for twisted cohomology groups are applied
to study of Pfaffian equations, contiguity relations, and so on. By the compatibility of these
intersection pairings and the pairings between twisted homology and cohomology groups given by
integrations, we can obtain the twisted period relations which imply quadratic relations between
hypergeometric functions.

In [15] which is in the same proceedings, Matsumoto introduces the intersection theory for
twisted (co)homology groups associated with multi-valued functions in one variable, which arise
from » F} and Lauricella’s Fpp. In this article, we treat those associated with multi-valued functions
in multi-variables, focusing on two examples arising from Lauricella’s F4 and Fc.
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This article is arranged as follows. In Section 2, we give the definitions of Lauricella’s
hypergeometric functions. We also introduce their Euler-type integral representations and the
systems E4, Ep, Ec and Ep of differential equations satisfied by Fa, Fp, Fc and Fp, respectively.
In Section 3, we give settings of twisted (co)homology groups and intersection pairings to study
F4 and Fc. In Section 4, we explain how to construct twisted cycles that corresponds to series
solutions to E4 or Ec. By evaluating intersection numbers, we obtain quadratic relations between
F or Fc from the twisted period relations.

2. Appell-Lauricella’s hypergeometric functions

In this section, we give the definitions of Appell-Lauricella’s multi-variable hypergeometric
functions, and collect some basic facts referring to [14].

2.1 Lauricella’s hypergeometric series

Lauricella’s hypergeometric functions of m variables x = (xy, ..., x;,) are defined as follows:

FA(a,b],...,bm,cl’_‘.’cm;x)
(o8]
a bp, - (b
Z ( )n1+ +nm( )nl ( m)nmx;’l...x:’nm (x| + -+ + x| < 1),
o o (€D = (o1 P!
FB(ala-.-,am,bl,.,,,bm’c;x)

[ee]
(@), - (@), (BD)n, - (bym)
= Z ny m)ng, ,”1 |mnmx?1...x,r,l1m (|x1|,...,|xm|<1),
n],...,nm:() (C)n1+...+nmn1' ce Ty !
FC(a’ b’ Cl, .. .,Cm;x)

0

D441, (D) 4 \
Z (@ +--tn DIy - xnl...me Wlxt]+ -+ l|xml < 1),

(cl)nl o '(cm)nmnl!' : 'nm! !

Nlyeensyyy =0

FD(aabb"',bm’c;x)

i (a)n1+~--+nm(bl)n1 e (bm)nm n i

Mo (xtly .o oy |xm| < 1).
(Onyetm 1 e 1! 1 m veeeo Am

n,....,nm =0

When m = 2, Lauricella’s F4 (resp. Fp, Fc, Fp) is also called Appell’s hypergeometric function
F2 (resp. F3, F4, F]).

Lauricella || F4a | Fg | Fc | Fp
Appell | F|F| R

2.2 Euler-type integral representations
To obtain Euler-type integral representations of Lauricella’s hypergeometric functions, we use

L'(p)l'(q)

1
=11 _ a1, — _
/Otp (1-0)9""dt = B(p,q) T+ q)
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and its generalization
n _ uk Pm+1—1 m+1 r
/ l_[t,fkl-(l— tk) 1 dtlA---/\dtm_T(p)
AM k=1 k=1 F(Z pk)
where A™ = {(t1,....t,n) €R™ | 1, .. ty, 1 = 371, tx > O}

2.2.1 Euler-type integral representation of F4

For simplicity, we denote 3, = >/ | and [] = [],L,. If Re(bx), Re(cx — br) > 0, then

FA(a’bl,-- bm’Cl’---’Cm;x)

I'(ck) . cembi- —a
HF(bUF(Z—bk) [T o) (1= 3 ) “an @

O, 1)m

where dt = dt; A --- A dt,,. To show this expression, it is sufficient to consider the power series
expansion of (1 — Y, xx#;)™“.

2.2.2 Euler-type integral representation of Fp

If Re(by), Re(c — . bi) > 0, then

Fglay,...,amb1,...,bm,c;x)

r( ) k= _ap c—> br—1
= F(C—Zbkc)HF(bk) . Aml—[ (t,f (= et ) (1 —Ztk) dt.

If we put 1 = i—’;, the differential form changes into

b . 1 c—> br-1
b, L —ak)~1— - ds.
[ Tl amsre) (=X ] 7 a
By the integral representation (2), we expect that Fg(ay, . . ., m, b1, ..., by, €3 X1, . . ., X)) and
_ 1 1
[Tc™  Fa( Do b= Lbi o bubr =i+ 1 by =+ 15—, — ).
X1 Xm

have similar properties; see also Remark 2.1.

2.2.3 Euler-type integral representation of F¢

By considering the power series expansion, we expect the integral representation
Fe(a,b,cy, ... cm;x)

r(1 - a) 5 cxmamm e
:Hr(l—ck)-r(ECk—a-m+1)'/An’k (1-2u) (I—Zf) dr. (3)

However, if we put A = A™, the power series expansion of (1 — ), f—lf)_b

is divergent. A “twisted
cycle” A such that this integral representation holds has been constructed in [8]. In Section 4.2, we
will explain the construction. Note that the zero set of the factor (1 — ) %") is not a hyperplane,
while those of the factors in the integral representations of F4, Fg and Fpp are hyperplanes.
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2.2.4 Euler-type integral representations of F,

There are two types of integral representations of Fpp. The first one is expressed as a one-
dimensional integral; if Re(a), Re(c¢ — @) > 0, then

r ! : o
FD(a,bl,...,bm,c;x)zﬁ-/o 1711 = p)ce! l—[(l—xit)_h"dt. 4)

i=1

The second one is expressed as an m-dimensional integral; if Re(by), Re(c — 3 bg) > 0, then
Fp(a, by, ..., by, c;x)

= T(c— Zl;ic))n T(bo) './Am l_[t]fk_l . (1 - Ztk)c_Zbk_l (1 - Zxktk)_a dt.

2.3 Differential equations

Lauricella’s F4, Fp, Fc and Fp are solutions to the regular holonomic systems E4, Eg, Ec
and Ep of linear differential equations, respectively.

2.3.1 Differential equations for F4

We set 9; = %. Lauricella’s Fa(a, by, . .., by, c1, . . ., Cy; X) satisfies
L

(xk(l - xk)alf — Xk Z xiaka,' + (Ck - (a + b + l)xk)(‘)k - by Z x,-ai - abk)f(x) =0
1<i<m 1<i<m
i#k ik
fork=1,...,m. Let Eq(a, by, ..., bm, c1,...,Cn)be the system of differential equations generated
by them. It is known that the rank of E4 is 2™, and the set of singular points (called the singular
locus) is

r

SAI(ﬁxk- [ (1—Zx,~p):0)ch.

k=1 {i1,-.0r yC{1,...,m} p=1

For example, Sx = (x1x2(1 — x1)(1 = x2)(1 — x1 — xp) = 0) if m = 2. Let x ¢ S4 be a point near to
the origin. If cx ¢ Z, then a basis of the local solution space of E4 is given by

r

.
Flir ]_[xilp—qp -FA(a+r—Zc,-p,bI,CI;x) (I={i,....ix}c{l,....m}), (5

p=1 p=1
where the vectors ! = (b!,..., bl )and ¢! = (c{, ...,cl ) are defined by
bl =bi +1—C[, C.I =2—C,',
ip Tl » ip » Gpel, jel)
{ b]I = bj, C]I. =¢

Note that if = @, then fg = Fala,by,....,bm,C1, ..., Cms X).
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2.3.2 Differential equations for Fg

Lauricella’s Fg(ay, ..., am, b1, . . ., by, c; x) satisfies

(xk(l - xk)a,f + Z X; Ok 0; + (C - (ak + by + l)xk)ak - akbk)f(x) =0

1<i<m
i+k

fork=1,...,m. LetEg(ai, ..., am, b1, ..., bm, c)be the system of differential equations generated
by them.

Remark 2.1. In fact, by setting xx = é (k=1,...,m), we have

f(x) is a solution to Eg(ay, ..., am, b1, ..., bm, )

— ﬂgbk -f(.f)isasolutiontoEA(Zbk—c+1,b1,...,bm,b1 —a +1,...,bm—am+1).

Thus, some results for Fg are obtained from those for F4.

2.3.3 Differential equations for F¢

Lauricella’s Fe(a, b, ¢y, . . ., cn; x) satisfies

(xk(l - xk)(?,f - Xk Z X;0; 0 — Z x;xj0;0; + (cx — (a + b+ 1)xx)0k

1<i<m 1<i,j<m
i+k izk
~(a+b+1) Y xb, —ab)f(x) =0
1<i<m
ik
fork =1,...,m. Let Ec(a, b, cy, ..., cn) be the system of differential equations generated by them.

It is known that the rank of E¢ is 2™, and the singular locus is
m
SC:(I_[xk' (1+Z$k\/ﬂ)=0)CCm.
k=1 El,...Em==1 k

For example, S¢ = (xlxz(xf + xg —2x1x3 —2x1 = 2x,+ 1) = 0)if m = 2. Let x ¢ Sc be a point
near to the origin. If ¢; ¢ Z, then a basis of the local solution space of E¢ is given by

r r r
L 1_'1,? . .
f(’:‘ o= nxipc’ -FC(a+r—Zc,-p,b+r—Zc,-p,cl;x) (I ={i1,...,i,} c{1,...,m}),
p=1 p=1 p=1
(6)
where the vector ¢/ = (¢!, ..., c},) is defined by

ciIP =2-c¢, (ip€l),
c]I. =cj (Gel.

Note that if = @, then fg =Fc(a, b, cy,. .., cm;X).
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2.3.4 Differential equations for Fp
Lauricella’s Fp(a, by, . . ., by, c; x) satisfies
(xk(l —x)df + (1= x) D %0k +(c = (@+bx + Dxe)de — b Y xi6; — abk)f(x) =0
lsiim 1§i%m
i# i*

fork=1,...,m,and
((Xi — x;)0;0; — b;0; + biaj)f(x) =0

forl1 <i < j <m. Let Ep(a,b,...,by,,c)be the system of differential equations generated by
them. It is known that the rank of Ep is m + 1, and the singular locus is

m
Sp = (ﬂxk(l—xk)- l—l (xi — xj) =O) ccm.
k=1 1<i<j<m
For example, Sp = (x1x2(1 — x1)(1 — x2)(x1 — xp) = 0) if m = 2.

We do not have a basis of the local solution space, which are expressed by Fp. On the other
hand, Fp is well-studied from the view point of the integral representation (4), because twisted
(co)homology theory for a one-dimensional integral is easier than the higher dimensional cases. In
[15], the study of Fp in the framework of the intersection theory for twisted (co)homology groups
is explained.

3. Twisted homology and cohomology groups for F4 and F¢

In this article, we focus on F4 and Fc. We study them by using twisted (co)homology groups
that are associated with the Euler-type integral representations.

Assumption 3.1. Hereafter, we assume that the parameters satisfy some non-integral conditions.

¢ For F4, we assume

r

bi,....bm, c1=b1,...,Cn — bm, a—Zc,-r ¢ Z (forany {ij,...,i,} c{l,...,m}), (7)

p=1
Cly.-. Cm & Z. (8)
e For F, we assume
r r
a—Zcir, b—zc,-, ¢7 (forany {i1,....iy} c {1,...,m}), )
p=1 p=1
Cly..sCm & Z. (10)

The system E4 (resp. Ec) is irreducible when the condition (7) (resp. (9)) holds. Under the
condition (8) (resp. (10)), the series solutions (5) (resp. (6)) form a basis of local solution space of
E 4 (resp. E¢).

For basic ideas of twisted (co)homology groups and intersection theory, refer to [15].
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3.1 Twisted homology and cohomology groups

Recall the integral representations (2) and (3). Up to I'-factors, F4 and F¢ are expressed by
the integrals

fo T =) (1= Y

—cx+ > cx—a—m+l1 _ dt
‘/Antii b (1 - ka) - wy(t) bm, (12)

respectively, where we set wy(t) = [Ttx - (1 - X ):T") which is a polynomial of degree m. Let us
consider twisted (co)homology theory for the multi-valued functions

Ua(t) = l_[ (f;l:k(l - fk)c"'_hk_l) : (1 - Z xktk)_a,

. 2 ck—a—-m+1
Ve =[ T (1=-2a)" " owan

defined on
Ty =C" - (U(zk =0ul Ja-n=0u1-> xun :())),
T ="~ ([Jo =000 -3 6=0U0m.0=0).
respectively. Here, we fix x = (x, ..., x,,) and regard ¢ = (t1, ..., t,) as variables.

Remark 3.2. In (11) and (12), we take out the differential forms % and m, respectively.
If we choose other differential forms, structures of twisted cohomology groups are slightly changed.
However, it is not essential in this article.
3.1.1 Twisted homology groups

Let#be A or C. We set

Cr = { Z aj 'Aj®U#,A‘,-

J:finite

aj €C, A;: k-simplex},

le = { Z aj - Aj ® U#,A_,- aj € C, Aj : k-simplex} D Ck,
J:locally finite

where A ® Uy A denotes the pair of the simplex A C Ty and the branch Uy () of Uy(t) on A. We
define twisted boundary operators 8V* : G — Cx—1 and 8Y% : C' — C | by

OV (A ® Uy a) = OA ® Ugaloa.

Since we have 0V 0 9V = 0, we define the k-th twisted homology group and the k-th locally finite
twisted homology group by

Hy(Ty, Uy) = ker(0% : G = Ci=1)/0Y*(Chn1).  Hy' (Ty, Uy) = ker(8%* : G — C )/ (C, ).

respectively. An element of ker(8Y*) is called a twisted cycle.
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3.1.2 Twisted cohomology groups
Let QX (T%) be the space of the rational k-forms on P* that have poles along P* — Ty. We set

dU
ws = — € QN (Ty).
Uy

Since Vi = d + wyA : QF(Ty) — QFF1(Ty) satisfies Vi o Vi = 0, we can define the k-th twisted
cohomology group by

HN(Q*(Ty), Vi) = ker(V : QX(Ty) — Q1 (Ty)/V(Q (T)).
Let EX(Ty) be the space of smooth k-forms on Ty with compact support. By using E2(Ty) and Vi,
we can also define the twisted cohomology group H*(E2(Ty), V&) with compact support.
Fact 3.3 (cf. [1], [3], [13]). Let # be A or C. Under Assumption 3.1, we have the following.
1. Ifk # m, then Hy(Ty, Uy) = 0, H(Ty, Uy) = 0, H*(Q*(Ty), V4) = 0 and H*(E(Ty), Vy) = 0.
2. A canonical map H,,(Ts, Ug) — HY(Ty, Uy) is an isomorphism.
3. There exists an isomorphism j : H™(Q*(Ty), V4) — H™(EX(Ty), Vy).

4. dim Hm(T#, U#) = dim Hm(Q.(T#), V#) =2" (= rank OfE#).

3.2 Intersection pairings
3.2.1 Intersection pairing for twisted homology groups

By replacing Uy with U, = 1/Uy, we can also define H,,(Ty, U;"') and H)(Ty, U,'). We
define the intersection pairing 7" between H,,,(Ty, Ux) and H' (T, U;l) ~ Hp(Ty, Uy .
Let

o= ai-A®Usa (1), T=) b AU ()
i:fin. J

be twisted cycles, where each pair (A;, AJ’.) does not intersect or intersects transversally. Their
intersection number is defined by

o)=Y by (AL Ay - Una,(p) - Usa (p)

PEA; ﬂA}
where (A;, A]’.)p is the topological intersection number of A; and A;. at p.

3.2.2 Intersection pairing for twisted cohomology groups

We can define the intersection pairing 7 ¢ between H™(Q*(Ty), V¢) and H"(Q*(T3), V), where
V;#/ =d — wsA.

By using the isomorphism j : H™(Q*(T4), V&) — H™(&EX(Ty), V) in Fact 3.3, we can define
the intersection number by

I(p) = /T JQAY (&€ HMQ(Ty). Va), v € H™(Q"(Ty), VY)).

Note that we regard Ty C PX as a 2k-dimensional real manifold.
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3.2.3 Twisted period relations

By using the intersection pairings, we can obtain twisted period relations. In this section, we
give only results. For details, see [15].

Let {7j}j=1,...om C Hy(Ty, Ug) and {¢}j=1,..om C H™(Q*(Ty), Vy) be bases. We set

H = (Ih(‘ri, T]Y)) - C= (I"(wi, lﬁj)) )

ij= ij=1,...,2m

1‘[:( U, ) , l'I_:(/U_1 ) ’
" /T #i i,j=1,...,2m 7V # Vi i,j=1,...,2m
J

J

where T]\./ € Hpu(Ty, Uy N~ HI(Ty, U, 1) is a twisted cycle defined by the same manner as 7; with
respect to Uy, !, Thus, we obtain the twisted period relation

I, ‘H' T = .

Note that the entries of Il are hypergeometric integrals.
If the intersection matrix H is diagonal, then its (i, j)-entry gives a simple relation:

Zm
I e
ém[k Unii /TZ Ug 'y = T yj). a3)

In this article, we construct a basis of the twisted homology group such that the intersection matrix
is diagonal, and we rewrite this relation in terms of F4 or Fc.

4. Twisted cycles and twisted period relations for 4 and F¢

As mentioned in the previous section, if the homology intersection matrix is diagonal, then
we can obtain simple quadratic relations. In fact, cycles corresponding to series solutions (5) and
(6) satisfy this property in our cases. In this section, we explain how to construct such cycles and
rewrite the twisted period relation (13) in terms of F4 or F¢.

4.1 Regularization of the m-simplex

Before constructing the twisted cycles for F4 and F¢, we recall the regularization of the m-
simplex A". The regularization of a locally finite twisted cycle is a twisted cycle that represents
the inverse image of the canonical isomorphism H,, — H! (for F4 and Fc, the isomorphism is
mentioned in Fact 3.3). When m = 1, the regularization of the open interval A' = (0,1) c R is
explained in [15]. Similarly to m = 1, we can construct the regularization of the m-simplex for
m > 2.

As an example, we consider the case when m = 2. We set the multi-valued function U(z) =
tf‘ tfz(l —t1—6)BonT=C>=((t; =0)U(r =0)U (1 —1; —t, = 0)). For general cases, refer
to [1]. Let us construct the regularization of the locally finite twisted cycle A> ® U € Hg(T, U)
associated with the 2-simplex

A ={t1,)eR*|t1>0,10>0, 1 —1t; — 1, > O}.

10
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As in the right side of Figure 1, let A be the small triangle included in A% and I; (i = 1,2, 3) be
its boundary. We denote by S; (i = 1,2) a positively oriented circle in the #;-space starting from
the projection of I; to this space and surrounding the divisor (#; = 0), and denote by S3 a positively
oriented circle with a small radius in the orthogonal complement of the divisor (1 —# —t, = 0)
starting from the projection of I3 to this space and surrounding the divisor. The twisted cycle A>® U
is equal to a finite cycle
3

M=o+ BxOU - I")f v, —(is" 2?21) © g)
i=1 ' (i/)=(1,2),(2,3),3,1) ! /

in H;f(T, U), where 6; = ** V-ld; Thus, Arzeg € Hy(T, U) gives the regularization of A”> ® U.

Figure 1: A? and its regularization

42 Fc

We construct a basis of the twisted homology group that corresponds to the basis (6) of the
solution space of Ec, which are expressed by Fc. As an application, we give some quadratic
relations between F¢.

4.2.1 Twisted cycles corresponding to series solutions

Assume that xy, ..., x,, are sufficiently small positive real numbers. We construct a twisted

CyCle A, ...;,. Suc a € mtegra CH——v . CoIncCiaes wi € S€ries solution
yele Ay, ..., such that the integral [, Uc i coincides with the series soluti

iyip

r r r
TR I—¢; . .
fél r— l_[xipCp .Fc(a+r—Zcip,b+r—ZCip,cI;x) I={i,....i,} c{1,...,m}),
p=1 p=1 p=1
up to I'-factors.
Remark 4.1. Because of fg = Fc(a, b, cy,. . .,cm; x), Ag is nothing but the twisted cycle A men-

tioned in Section 2.2.3.

Wefix I = {iy,...,ir} € {l,...,m},andput {ji, ..., jm—r} = {1,...,m}—1I. Inthe discussion
below, the index p (resp. ¢) runs from 1 to r (resp. from 1 to m — r). We consider the change of

11
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variables

" = Sy (14)

in the integral

T (- Z)™ " - e

formally. Then we have

1—c; ci, =2 —cj
P j2 Jq
X. . S. . S .

1_[ lp / 1_I lp 1—[ Jg

p p q
X Y cr—a—-m i -b
ip Ja
(I_Z;_Zs]q) (I—ZSIP—ZS—.) ds
p v g p q "Ja
We set
X > cx—a—-m X -b
_ C,‘p—z . —qu . _ l _ . _ . jq
UC,I(S) = l_[ sip l_[ qu (1 Z 5; Z S,q) (1 Z slp Z S ) .
p q e p q 4

If we construct a twisted cycle Ail ...i, (in s-coordinates) such that

_ I.
./A Uc.1(s) ds = (constant) - F¢ (a +r— Z Cipob+r - Z Ciys € ,x),

iyir p p

then its image A;,...;, € H,,(T¢c, Uc) (in t-coordinates) under the map (14) gives a desired one.
In R™ c C™, the set

sk > 0, 1—2%—2% > 0, 1—2%—2%%
Ip Jq

is bounded region which includes the direct product

Ty = {(sl, ..., 85m) €R™

Si, > & I—Zsip >s,}

Sj, > & 1—2sj, >¢€
of an r-simplex and an (m — r)-simplex, for some & > 0. We construct a twisted cycle A,-l...l-r by
using 07,...;, and “e-neighborhood” of (s = 0),...,(s,m = 0),(1 = X 5;, = 0),(1 = X 55, = 0).
Example 4.2 (Example for m = 2).

e IfI =0, A@ =Ais given as Figure 2. In this case, we have | = sy, o, = 52 and A= A.

Precisely, it is written as

Sy xI))® Uc + Sy x L) ® Uc + (S3x3)® Uc

1-y;! 1-v;! 1 —vyiya!

(S1x8)®Uc + (S x83)® Uc + S3x8)®Uc

(I-yHI =y A=yY0=yiv2a™) (1 =yiy2aH(1 =y

A=ocUc +

>

where @ = €2 ﬁ“, Vi = ¢>V=1¢k and the radius of the circle S; is &.

12
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/ E\ S$182 — X182 — T2s1 =0
c
\.L/ 1—8—8=0

Figure 2: A form =2 Figure 3: A for m = 2

So — 81520 —x2 =0
2= 7 |

« If I = {1}, A, is given as Figure 3.
In any cases, some circles may surround two divisors.

Proposition 4.3 ([3]).

B [1,T(ci, =1 -TI,T(1 —¢;,) - T(Xek —a—m+ DI(1 - b)
/ Uc.i(s) ds = L(X,c,-—a-r+ DX, c,-b-r+1)

.Fc(a+r—ZciP,b+r—Zc,-p,c1;x).

p p

Ail"'ir

Proof. Consider the power series expansion of the left-hand side with respect to xi, ..., x,. By
our construction, this expansion converges uniformly. As a coefficient of xI” -+ x;™ in the power
series expansion, the integral

Ci, —Ni, —2 —Cj, —Nj _b_zn_' Y ck—a-m=3n;
‘/ l—lsipp Nip l_lsjq.lq Njg (1 _ Zsip) iq (1 B Zsjq) k P s (15)
A.
P

ipir  p q q

appears. If we regard A;, ...;_as atwisted cycle loading this integrand, each circle in A;,...;, surrounds
only one divisor. Thus, Ail ...i, is nothing but the regularization of the direct product of two simplices
A" (in (s;);er-coordinates) and A™™" (in (s;),es-coordinates). The integral (15) is equal to

Cip,—Nj, =2 -b-3 Njg —Cjg —Nj Y cx—a-m—% nip,
/, [T (0= 20s) dsi - /m_, [Ts 7 (1= 250 dsic
p p q

q
_ [1,(ci, —ni, = 1) - T(=b— X, n;, +1) ‘ [1,T(=¢j, —nj, + 1) - T(Xcxk—a-m—-2,n;, +1)
B C(-b+3%,ci,—Xn—r+1) L(X,ci,—a-YXm—r+1) ’

where ds; = ds;; A--- Ads;,, dsje =dsj, A--- Adsj, .. Byusing I'(2)I'(1 - z) = n/sin(nz) and
(a),, = T'(a + n)/T(a), we obtain the proposition. m|

Therefore, we obtain a twisted cycle corresponding to the solution fé‘ i

13
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Theorem 4.4 ([3]). Let A;,...;, be the twisted cycle in Tc which is obtained as the image of A,1

l

under the correspondence li, = £ ti, = Sj,- Then we have
Si
P

b
/ l_lt_ck (I—Ztk)zck “m-( —Z:—:) dt

11 iy

_ [1,T(ci, -1 - T, T(1—¢j, ) - T(Xex —a—m+ DI(1 - b)
B L(Xpci,—a-r+ D0 ,c, —b-r+1) c
Proof. Consider the change of variables (14), and use Proposition 4.3. O

Theorem 4.5 ([3]). We put a = ez”ﬁa, B = eZ”ﬁb, Vi = e2rV=lex
LI+ = I"ALA))=0

Hq ’)/jq : (G.’ - Hp )’ip)(ﬁ - Hp %'p)
[Tk =1 (@-Thy)(B-1)

2. ]h(Ail"'ir’Ax---ir) = (_l)r ’

Sketch of the proof. 1. Since the function fé corresponding to A; has the same monodromy
property as [[;¢; xl.l_c" around x = (0,.. ., 0), the claim follows from the monodromy invari-

ance of 7",
2. The self-intersection number of A;,...;. coincides with that of A;,...; . By using the results in

[9], we can evaluate it.
O

4.2.2 Cohomology intersection numbers

Except for m = 2 (Appell’s Fy), we do not have so many results for intersection numbers of the
twisted cohomology groups.
Theorem 4.6 ([3]). We put
diyy A Ndty, , diy A - Nty
= . 90 = .
[Tx i - (1 = X 1) [Moe-(1-Xu)-(1-X3

Then we have

IC(‘% 90,) =0,
m 1 m
I(p. ) = (22V-1
(. ¢) (ﬂ ) (ch—a—m+l b+m-— ch)IZ:l_l[ ZC(r)
where {17} is a sequence of subsets of {1, ..., m} such that

{(I,....m}y 21D >...2 1@ >5[V 2,

and we write 1) = {z(r) il

Roughly speaking, intersection numbers are evaluated as

Res;-p(some differential form),

P: intersection point of m divisors

if the pole divisor of wc = dlog Uc are normally crossing ([12]). In this case, we need to blow up
C™. For detailed calculations, refer to [3].

14
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4.2.3 Twisted period relations for F

Since the intersection matrix H with respect to the basis {A;}; € H,,(T¢, Uc) is diagonal by
Theorem 4.5, we obtain twisted period relations (13) as follows:

1
J'C ) ’ — . U . / U—l /’
(e, ¢") ZEW&WmNQQ A_ cy c¥

1 131 iy...ir A;'/lmfr
1
(g 9) = :/ U ﬂ/ UZle.
(‘10 (p) Z .Z—h(Ailu-ir’ A:/llr) Ailm,jr c¥ A;'/lu-ir = ¢

By Theorem 4.4, these integrals are expressed by F¢. Thus, we obtain two quadratic relations

0= 3 (=1) @ity = 1) - Fe(@ty i Diyooipn €73 0) + FO(2 = @ty 1= by 8177 0),
1

and

(1—a+b)-[1(1 - cx) o
bby...m 'za

bi, ..

iy

1 — ... P it
= Z(_l)r; : FC(aiy"ire bi1~--ir, c' lr;x) ' FC(Z — iy eiys _bi1~~~ir7 ¢t lr;x),
1

where we put
Qiy...i, =a+r-— Z Cips bi..i, =b+r - Z Cip Sttt =(2,...,2) =i,

4.2.4 Twisted period relations for Appell’s F; (m = 2)

In the case of m = 2, we have more results. In [6], we put

dty N dt dn A dt
1= O D= T o
4 nhtr(1 -t —1n) 14 bl -t —1t)
dt; A dty dn A dn
@3

= —_—, (’04 =
t(l =t —1) (1 =11 =)ty — x; — t1x2)

and evaluate their intersection matrix. For example,
Theorem 4.7 ([6]).
2. (27v=1)? 1

(cl+c2—a—2)-(—b)'x12+x§—2x1x2—2x1—2xz+1.

T(p4, p4) =

Note that x% + x% —2x1xy —2x1 — 2xp + 1 is a factor of the defining polynomial of the singular
locus Sc (see Section 2.3.3). By using this intersection number, we obtain the following relation:

b(a— DFs(a,b+ 1,c1,¢05x) - F4(2—a,1—b,2 - 1,2 — 2, %)
—bi(a; — D)Fy(a, b1 + 1,2 —cp,c5x) - F4(2 —ay, 1 — by, c1,2 — ¢23 x)
—by(ay — D)F4(az, by + 1,¢1,2 — 3 x) - F4(2 —ap, 1 — by,2 — ¢, ¢35 x)
+bia(arn — DFy(ai, bia + 1,2 = ¢1,2 = c2; x) - F4(2 — ain, 1 = b1a, 1, ¢2; %)
_ 2(1 =) = )

xf+x§—2x1x2—2x1 2+ 1

15
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43 Fyu

We can apply a similar argument for F4. We introduce some results, and omit detailed
calculations.

4.3.1 Twisted cycles corresponding to series solutions

For I = {iy,...,iy} c {1,...,m}, we put {ji,..., jm—r} = {1,...,m} — I. We consider the
change of variables

tip = BV tjq = qu
xlp

in the integral (11), formally. Similarly to Section 4.2.1, we can construct a twisted cycle Ai, ., (in
s-coordinates) such that

ci,—bi,—1

| | ci Xi ip Pip a ) o

/ . ( o ‘ (1_Zsip _: :qusjq) | | e (1 -q)(’]LI b.lq lds
Bipwir “p Sip p q q

= (constant) - FA(a +7r - Z Cips b, x).
p

Then, we obtain the following theorems.

Theorem 4.8 ([4]). We can construct twisted cycles A;,...;, € Hy(Ta,Ua) corresponding to the
series solutions:

/ 1—[ bk (1 )b 1) (1_2)%) “.

en\/j(z bip, =Y. cip+r) . I'(-a) ITI’ F(Cip — . 1—[ r(qu)r(CJq Jq) . fil"'ir
L, c, —a—r+l) ['(cj,) A

Theorem 4.9 ([4]). We put a = ez”ﬁ“, Br = ez”ﬁbk, Vi = e2mV-lek
LI+ = I"ALA))=0

a-11,7i, ‘ B, (L =v;,)
(@- DI, =yi,) LA =808, —vi,)

Remark 4.10. In [11], our construction of twisted cycles corresponding to series solutions is

2. T"(Niy i A ) =

generalized to a regular holonomic GKZ-hypergeometric system (A-hypergeometric system) which
is associated with an integer matrix A. When A has a unimodular triangulation, their intersection
numbers have been also obtained in [11]. In the other cases, the intersection numbers are studied
in [5].

4.3.2 Cohomology intersection numbers

In [13], the intersection matrix with respect to the basis

dy A -+ Ndt, I={i1,...,ir}C{l,...,m},
Gy iy = . )
e [1,, -1 -I1,1, (e sjmery ={1,....m} =1

16
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of the twisted cohomology group H"™(Q°*(T4), V4) is evaluated.
For I = {i},...,i;} c {l,...,m}, we put

: 1
.
{1 1= a= Qe+

where {I)} is a sequence of subsets of / such that

Ajp = Ay =

1l

[=1D210 V5. /@5 /W%,

Fact 4.11 ([13]). We have

_Z-C(QD[, QDI’) = (27‘[\/—_1)m . Z (AN l_[ 51,1’("))’

Ncil,...m) ngiy br.1(n)
where
51.0(1) 1l (me(InI)YUI NTI)), by () chn—1-b, (nelInl’),
(n) = \n) =
L1 0 (otherwise), LI b, nelI°nrlc).

4.3.3 Twisted period relations for F4

We write one example of quadratic relations. The twisted period relation (13) with respect to
T¢(pp, 12...m) and the basis {A;} € H,,(Ta, Un) is reduced into the relation

a—zpcig)+l 7

[0 - ) : 1 (-1y
N N It S

- Fa(ap, b',c'sx) - Fa(=ar, ', &5 x),
(10} 1=1

where a sequence {/V} is same as Section 4.2.2, and we put

ary = ag,...q, = a +1”—Zci,,,
p

bI Zbi +1-¢ , C.I =2-ci,
lp p p iIp P (lp c I, ] il),
{¥=%v {{‘

B=(,...0-b, d=@..2-c.

Acknowledgments

This article is based on the talk in the meeting at the University of Padova in September 2019.
The author thanks to Professor Pierpaolo Mastrolia for his invitation. The author also grateful to
Hjalte Frellesvig, Federico Gasparotto, Manoj K. Mandal and Luca Mattiazzi for having attended
the meeting, and for having looked after him so well during his stay in Padova.

Finally, the author expresses his gratitude to the speakers of the work shop “MathemAmplitudes
2019: Intersection Theory & Feynman Integrals” for accepting that the proceedings include his
contribution nevertheless he could not participate the work shop.

17



Appell-Lauricella’s hypergeometric functions and intersection theory

References

[1] K. Aomoto and M. Kita, translated by K. Iohara, Theory of Hypergeometric Functions Springer
Verlag, New York, 2011.

[2] K. Choand K. Matsumoto, Intersection theory for twisted cohomologies and twisted Riemann’s
period relations I, Nagoya Math. J. 139 (1995) 67-86.

[3] Y. Goto, Twisted cycles and twisted period relations for Lauricella’s hypergeometric function
Fc, Internat. J. Math. 24 (2013) 1350094 19pp.

[4] Y. Goto, Twisted period relations for Lauricella’s hypergeometric functions F4, Osaka J. Math.
52 (2015) 861-877.

[5] Y. Goto and S.-J. Matsubara-Heo, Homology and cohomology intersection numbers of GKZ
systems, arXiv:2006.07848.

[6] Y. Goto and K. Matsumoto, The monodromy representation and twisted period relations for
Appell’s hypergeometric function Fy, Nagoya Math. J. 217 (2015) 61-94.

[7] R. Hattori and N. Takayama, The singular locus of Lauricella’s Fc, J. Math. Soc. Japan 66
(2014) 981-995.

[8] M. Kita, On Hypergeometric Functions in Several Variables 1. New integral representations
of Euler type, Japan. J. of Math. 18 (1992), 25-74.

[9] M. Kita and M. Yoshida, Intersection theory for twisted cycles I, 11, Math. Nachr. 166 (1994),
287-304, 168 (1994), 171-190.

[10] G. Lauricella, Sulle funzioni ipergeometriche a piu variabili, Rend. Circ. Mat. Palermo 7
(1893) 111-158.

[11] S.-J. Matsubara-Heo, Euler and Laplace integral representations of GKZ hypergeometric
function, arXiv:1904.00565.

[12] K. Matsumoto, Intersection numbers for logarithmic k-forms, Osaka J. Math. 35 (1998)
873-893.

[13] K. Matsumoto, Pfaffian of Lauricella’s hypergeometric system F4, Rokko Lectures in Mathe-
matics 24 (2016), 23-37.

[14] K. Matsumoto, Appell and Lauricella hypergeometric functions, to appear in Chapter 3 of
Encyclopedia of Special Functions: The Askey-Bateman Project Volume 2. Multivariable
Special Functions.

[15] K.Matsumoto, Introduction to the Intersection Theory for Twisted Homology and Cohomology
Groups, in proceedings of MathemAmplitudes 2019: Intersection Theory & Feynman Integrals
(MA2019).

[16] N. E. Steenrod, Homology with local coefficients, Ann. of Math. (2) 44 (1943) 610-627.

18



	Introduction
	Appell-Lauricella's hypergeometric functions
	Lauricella's hypergeometric series
	Euler-type integral representations
	Euler-type integral representation of FA
	Euler-type integral representation of FB
	Euler-type integral representation of FC
	Euler-type integral representations of FD

	Differential equations
	Differential equations for FA
	Differential equations for FB
	Differential equations for FC
	Differential equations for FD


	Twisted homology and cohomology groups for FA and FC
	Twisted homology and cohomology groups
	Twisted homology groups
	Twisted cohomology groups

	Intersection pairings
	Intersection pairing for twisted homology groups
	Intersection pairing for twisted cohomology groups
	Twisted period relations


	Twisted cycles and twisted period relations for FA and FC
	Regularization of the m-simplex
	FC
	Twisted cycles corresponding to series solutions
	Cohomology intersection numbers
	Twisted period relations for FC
	Twisted period relations for Appell's F4 (m=2)

	FA
	Twisted cycles corresponding to series solutions
	Cohomology intersection numbers
	Twisted period relations for FA



