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1. Introduction

Gauss’ hypergeometric function is defined by

2F1(a, b, c; x) =
∞∑
n=0

(a)n(b)n
(c)n(1)n

xn,

where x ∈ C is a variable, a, b, c ∈ C are parameters (c < Z≤0), and we set (α)n = α(α + 1) · · · (α +
n − 1) = Γ(α + n)/Γ(α). This series converges on {x ∈ C | |x | < 1}. It is well-known that
2F1(a, b, c; x) satisfies the hypergeometric differential equation(

x(1 − x)
d2

dx2 + (c − (a + b + 1)x)
d
dx
− ab

)
f (x) = 0,

and that if Re(a),Re(c − a) > 0, then 2F1(a, b, c; x) admits an Euler-type integral representation:

2F1(a, b, c; x) =
Γ(c)

Γ(a)Γ(c − a)

∫ 1

0
ta(1 − t)c−a(1 − xt)−b

dt
t(1 − t)

. (1)

As classical generalizations of 2F1, Lauricella’s multi-variable hypergeometric functions FA, FB,
FC and FD are well-known. These are also called Appell’s hypergeometric functions when they are
in two variables.

The hypergeometric function 2F1 and its generalizations are studied from various view points.
In this article, we study them by applying the intersection theory for twisted homology and cohomol-
ogy groups. Twisted (co)homology groups are associatedwith local systems defined bymulti-valued
functions that are integrands of Euler-type integral representations. For example, when we consider
2F1, we use the local system defined by the multi-valued function ta(1 − t)c−a(1 − xt)−b in t which
appears in (1). Aomoto applied such homology and cohomology groups to study of hypergeometric
functions.

Intersection pairings of (co)homology groups with coefficients in local systems were defined
in [16]. However, since these definitions are written in terms of homological algebra, it seems
not easy to evaluate the intersection numbers directly. By [9], intersection numbers of twisted
homology groups can be evaluated in terms of topological intersection numbers and branches of
the multi-valued function. By [2] and [12], intersection numbers of twisted cohomology groups are
expressed by residues of logarithmic forms.

The intersection theory for twisted homology groups are applied to study of the monodromy
representations, connection problems, and so on. That for twisted cohomology groups are applied
to study of Pfaffian equations, contiguity relations, and so on. By the compatibility of these
intersection pairings and the pairings between twisted homology and cohomology groups given by
integrations, we can obtain the twisted period relations which imply quadratic relations between
hypergeometric functions.

In [15] which is in the same proceedings, Matsumoto introduces the intersection theory for
twisted (co)homology groups associated with multi-valued functions in one variable, which arise
from 2F1 and Lauricella’s FD . In this article, we treat those associated with multi-valued functions
in multi-variables, focusing on two examples arising from Lauricella’s FA and FC .
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This article is arranged as follows. In Section 2, we give the definitions of Lauricella’s
hypergeometric functions. We also introduce their Euler-type integral representations and the
systems EA, EB, EC and ED of differential equations satisfied by FA, FB, FC and FD , respectively.
In Section 3, we give settings of twisted (co)homology groups and intersection pairings to study
FA and FC . In Section 4, we explain how to construct twisted cycles that corresponds to series
solutions to EA or EC . By evaluating intersection numbers, we obtain quadratic relations between
FA or FC from the twisted period relations.

2. Appell-Lauricella’s hypergeometric functions

In this section, we give the definitions of Appell-Lauricella’s multi-variable hypergeometric
functions, and collect some basic facts referring to [14].

2.1 Lauricella’s hypergeometric series

Lauricella’s hypergeometric functions of m variables x = (x1, . . . , xm) are defined as follows:

FA(a, b1, . . . , bm, c1, . . . , cm; x)

=

∞∑
n1,...,nm=0

(a)n1+· · ·+nm (b1)n1 · · · (bm)nm
(c1)n1 · · · (cm)nmn1! · · · nm!

xn1
1 · · · x

nm
m (|x1 | + · · · + |xm | < 1),

FB(a1, . . . , am, b1, . . . , bm, c; x)

=

∞∑
n1,...,nm=0

(a1)n1 · · · (am)nm (b1)n1 · · · (bm)nm
(c)n1+· · ·+nmn1! · · · nm!

xn1
1 · · · x

nm
m (|x1 |, . . . , |xm | < 1),

FC(a, b, c1, . . . , cm; x)

=

∞∑
n1,...,nm=0

(a)n1+· · ·+nm (b)n1+· · ·+nm

(c1)n1 · · · (cm)nmn1! · · · nm!
xn1

1 · · · x
nm
m (

√
|x1 | + · · · +

√
|xm | < 1),

FD(a, b1, . . . , bm, c; x)

=

∞∑
n1,...,nm=0

(a)n1+· · ·+nm (b1)n1 · · · (bm)nm
(c)n1+· · ·+nmn1! · · · nm!

xn1
1 · · · x

nm
m (|x1 |, . . . , |xm | < 1).

When m = 2, Lauricella’s FA (resp. FB, FC , FD) is also called Appell’s hypergeometric function
F2 (resp. F3, F4, F1).

Lauricella FA FB FC FD

Appell F2 F3 F4 F1

Table 1

2.2 Euler-type integral representations

To obtain Euler-type integral representations of Lauricella’s hypergeometric functions, we use∫ 1

0
tp−1(1 − t)q−1dt = B(p, q) =

Γ(p)Γ(q)
Γ(p + q)

3
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and its generalization∫
∆m

m∏
k=1

tpk−1
k
·

(
1 −

m∑
k=1

tk
)pm+1−1

dt1 ∧ · · · ∧ dtm =
∏m+1

k=1 Γ(pk)

Γ(
∑m+1

k=1 pk)
,

where ∆m = {(t1, . . . , tm) ∈ Rm | t1, . . . , tm, 1 −
∑m

k=1 tk > 0}.

2.2.1 Euler-type integral representation of FA

For simplicity, we denote
∑
=

∑m
k=1 and

∏
=

∏m
k=1. If Re(bk), Re(ck − bk) > 0, then

FA(a, b1, . . . , bm, c1, . . . , cm; x)

=
∏ Γ(ck)
Γ(bk)Γ(ck − bk)

·

∫
(0,1)m

∏ (
tbk−1
k
· (1 − tk)ck−bk−1

)
·

(
1 −

∑
xk tk

)−a
dt, (2)

where dt = dt1 ∧ · · · ∧ dtm. To show this expression, it is sufficient to consider the power series
expansion of (1 −

∑
xk tk)−a.

2.2.2 Euler-type integral representation of FB

If Re(bk), Re(c −
∑

bk) > 0, then

FB(a1, . . . , am, b1, . . . , bm, c; x)

=
Γ(c)

Γ(c −
∑

bk)
∏
Γ(bk)

·

∫
∆m

∏ (
tbk−1
k
· (1 − xk tk)−ak

)
·

(
1 −

∑
tk
)c−∑ bk−1

dt .

If we put tk =
sk
xk
, the differential form changes into

∏
x−bk

k
·
∏ (

sbk−1
k
· (1 − sk)−ak

)
·

(
1 −

∑ 1
xk

sk

)c−∑ bk−1
ds.

By the integral representation (2), we expect that FB(a1, . . . , am, b1, . . . , bm, c; x1, . . . , xm) and∏
x−bk

k
· FA

(∑
bk − c + 1, b1, . . . , bm, b1 − a1 + 1, . . . , bm − am + 1;

1
x1
, . . . ,

1
xm

)
.

have similar properties; see also Remark 2.1.

2.2.3 Euler-type integral representation of FC

By considering the power series expansion, we expect the integral representation

FC(a, b, c1, . . . , cm; x)

=
Γ(1 − a)∏

Γ(1 − ck) · Γ(
∑

ck − a − m + 1)
·

∫
∆

∏
t−ck
k
·

(
1 −

∑
tk
)∑ ck−a−m

(
1 −

∑ xk
tk

)−b
dt . (3)

However, if we put ∆ = ∆m, the power series expansion of (1 −
∑ xk

tk
)−b is divergent. A “twisted

cycle” ∆ such that this integral representation holds has been constructed in [8]. In Section 4.2, we
will explain the construction. Note that the zero set of the factor (1 −

∑ xk
tk
) is not a hyperplane,

while those of the factors in the integral representations of FA, FB and FD are hyperplanes.
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2.2.4 Euler-type integral representations of FD

There are two types of integral representations of FD . The first one is expressed as a one-
dimensional integral; if Re(a), Re(c − a) > 0, then

FD(a, b1, . . . , bm, c; x) =
Γ(c)

Γ(a)Γ(c − a)
·

∫ 1

0
ta−1(1 − t)c−a−1

m∏
i=1
(1 − xit)−bi dt. (4)

The second one is expressed as an m-dimensional integral; if Re(bk), Re(c −
∑

bk) > 0, then

FD(a, b1, . . . , bm, c; x)

=
Γ(c)

Γ(c −
∑

bk)
∏
Γ(bk)

·

∫
∆m

∏
tbk−1
k
·

(
1 −

∑
tk
)c−∑ bk−1 (

1 −
∑

xk tk
)−a

dt.

2.3 Differential equations

Lauricella’s FA, FB, FC and FD are solutions to the regular holonomic systems EA, EB, EC

and ED of linear differential equations, respectively.

2.3.1 Differential equations for FA

We set ∂i = ∂
∂xi

. Lauricella’s FA(a, b1, . . . , bm, c1, . . . , cm; x) satisfies(
xk(1 − xk)∂2

k − xk
∑

1≤i≤m
i,k

xi∂k∂i + (ck − (a + bk + 1)xk)∂k − bk
∑

1≤i≤m
i,k

xi∂i − abk
)

f (x) = 0

for k = 1, . . . ,m. Let EA(a, b1, . . . , bm, c1, . . . , cm) be the system of differential equations generated
by them. It is known that the rank of EA is 2m, and the set of singular points (called the singular
locus) is

SA =

( m∏
k=1

xk ·
∏

{i1,...,ir }⊂{1,...,m}

(
1 −

r∑
p=1

xip
)
= 0

)
⊂ Cm.

For example, SA = (x1x2(1 − x1)(1 − x2)(1 − x1 − x2) = 0) if m = 2. Let x < SA be a point near to
the origin. If ck < Z, then a basis of the local solution space of EA is given by

f i1 · · ·ir
A

=

r∏
p=1

x
1−cip
ip

· FA

(
a + r −

r∑
p=1

cip, b
I, cI ; x

)
(I = {i1, . . . , ir } ⊂ {1, . . . ,m}), (5)

where the vectors bI = (bI1, . . . , b
I
m) and cI = (cI1, . . . , c

I
m) are defined by{

bIip = bip + 1 − cip,

bIj = bj,

{
cIip = 2 − cip,

cIj = cj
(ip ∈ I, j < I).

Note that if I = ∅, then f ∅
A
= FA(a, b1, . . . , bm, c1, . . . , cm; x).

5
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2.3.2 Differential equations for FB

Lauricella’s FB(a1, . . . , am, b1, . . . , bm, c; x) satisfies(
xk(1 − xk)∂2

k +
∑

1≤i≤m
i,k

xi∂k∂i + (c − (ak + bk + 1)xk)∂k − akbk
)

f (x) = 0

for k = 1, . . . ,m. Let EB(a1, . . . , am, b1, . . . , bm, c) be the system of differential equations generated
by them.

Remark 2.1. In fact, by setting xk = 1
ξk

(k = 1, . . . ,m), we have

f (x) is a solution to EB(a1, . . . , am, b1, . . . , bm, c)

⇐⇒
∏

ξbk · f (ξ) is a solution to EA

(∑
bk − c + 1, b1, . . . , bm, b1 − a1 + 1, . . . , bm − am + 1

)
.

Thus, some results for FB are obtained from those for FA.

2.3.3 Differential equations for FC

Lauricella’s FC(a, b, c1, . . . , cm; x) satisfies(
xk(1 − xk)∂2

k − xk
∑

1≤i≤m
i,k

xi∂i∂k −
∑

1≤i, j≤m
i,k

xixj∂i∂j + (ck − (a + b + 1)xk)∂k

− (a + b + 1)
∑

1≤i≤m
i,k

xi∂i − ab
)

f (x) = 0

for k = 1, . . . ,m. Let EC(a, b, c1, . . . , cm) be the system of differential equations generated by them.
It is known that the rank of EC is 2m, and the singular locus is

SC =
( m∏
k=1

xk ·
∏

ε1,...εm=±1

(
1 +

∑
k

εk
√

xk
)
= 0

)
⊂ Cm.

For example, SC = (x1x2(x2
1 + x2

2 − 2x1x2 − 2x1 − 2x2 + 1) = 0) if m = 2. Let x < SC be a point
near to the origin. If ck < Z, then a basis of the local solution space of EC is given by

f i1 · · ·ir
C

=

r∏
p=1

x
1−cip
ip

· FC

(
a + r −

r∑
p=1

cip, b + r −
r∑

p=1
cip, c

I ; x
)
(I = {i1, . . . , ir } ⊂ {1, . . . ,m}),

(6)

where the vector cI = (cI1, . . . , c
I
m) is defined by{

cIip = 2 − cip (ip ∈ I),

cIj = cj ( j < I).

Note that if I = ∅, then f ∅
C
= FC(a, b, c1, . . . , cm; x).

6
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2.3.4 Differential equations for FD

Lauricella’s FD(a, b1, . . . , bm, c; x) satisfies(
xk(1 − xk)∂2

k + (1 − xk)
∑

1≤i≤m
i,k

xi∂i∂k + (c − (a + bk + 1)xk)∂k − bk
∑

1≤i≤m
i,k

xi∂i − abk
)

f (x) = 0

for k = 1, . . . ,m, and (
(xi − xj)∂i∂j − bj∂i + bi∂j

)
f (x) = 0

for 1 ≤ i < j ≤ m. Let ED(a, b1, . . . , bm, c) be the system of differential equations generated by
them. It is known that the rank of ED is m + 1, and the singular locus is

SD =
( m∏
k=1

xk(1 − xk) ·
∏

1≤i< j≤m
(xi − xj) = 0

)
⊂ Cm.

For example, SD = (x1x2(1 − x1)(1 − x2)(x1 − x2) = 0) if m = 2.
We do not have a basis of the local solution space, which are expressed by FD . On the other

hand, FD is well-studied from the view point of the integral representation (4), because twisted
(co)homology theory for a one-dimensional integral is easier than the higher dimensional cases. In
[15], the study of FD in the framework of the intersection theory for twisted (co)homology groups
is explained.

3. Twisted homology and cohomology groups for FA and FC

In this article, we focus on FA and FC . We study them by using twisted (co)homology groups
that are associated with the Euler-type integral representations.

Assumption 3.1. Hereafter, we assume that the parameters satisfy some non-integral conditions.

• For FA, we assume

b1, . . . , bm, c1 − b1, . . . , cm − bm, a −
r∑

p=1
cir < Z (for any {i1, . . . , ir } ⊂ {1, . . . ,m}), (7)

c1, . . . , cm < Z. (8)

• For FC , we assume

a −
r∑

p=1
cir , b −

r∑
p=1

cir < Z (for any {i1, . . . , ir } ⊂ {1, . . . ,m}), (9)

c1, . . . , cm < Z. (10)

The system EA (resp. EC) is irreducible when the condition (7) (resp. (9)) holds. Under the
condition (8) (resp. (10)), the series solutions (5) (resp. (6)) form a basis of local solution space of
EA (resp. EC).

For basic ideas of twisted (co)homology groups and intersection theory, refer to [15].

7
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3.1 Twisted homology and cohomology groups

Recall the integral representations (2) and (3). Up to Γ-factors, FA and FC are expressed by
the integrals ∫

(0,1)m

∏ (
tbk

k
(1 − tk)ck−bk−1

)
·

(
1 −

∑
xk tk

)−a dt∏
tk
, (11)∫

∆

∏
t1−ck+b
k

·

(
1 −

∑
tk
)∑ ck−a−m+1

· wx(t)−b
dt∏

tk(1 −
∑

tk)
, (12)

respectively, where we set wx(t) =
∏

tk ·
(
1 −

∑ xk
tk

)
which is a polynomial of degree m. Let us

consider twisted (co)homology theory for the multi-valued functions

UA(t) =
∏ (

tbk

k
(1 − tk)ck−bk−1

)
·

(
1 −

∑
xk tk

)−a
,

UC(t) =
∏

t1−ck+b
k

·

(
1 −

∑
tk
)∑ ck−a−m+1

· wx(t)−b

defined on

TA = C
m −

(⋃
(tk = 0) ∪

⋃
(1 − tk = 0) ∪ (1 −

∑
xk tk = 0)

)
,

TC = Cm −
(⋃
(tk = 0) ∪ (1 −

∑
tk = 0) ∪ (wx(t) = 0)

)
,

respectively. Here, we fix x = (x1, . . . , xm) and regard t = (t1, . . . , tm) as variables.

Remark 3.2. In (11) and (12), we take out the differential forms dt∏
tk

and dt∏
tk (1−

∑
tk )

, respectively.
If we choose other differential forms, structures of twisted cohomology groups are slightly changed.
However, it is not essential in this article.

3.1.1 Twisted homology groups

Let # be A or C. We set

Ck =


∑
j:finite

aj · ∆j ⊗ U#,∆ j

���� aj ∈ C, ∆j : k-simplex
 ,

Clf
k =


∑

j:locally finite
aj · ∆j ⊗ U#,∆ j

���� aj ∈ C, ∆j : k-simplex
 ⊃ Ck,

where ∆ ⊗ U#,∆ denotes the pair of the simplex ∆ ⊂ T# and the branch U#,∆(t) of U#(t) on ∆. We
define twisted boundary operators ∂U# : Ck → Ck−1 and ∂U# : Clf

k
→ Clf

k−1 by

∂U#(∆ ⊗ U#,∆) = ∂∆ ⊗ U#,∆ |∂∆.

Since we have ∂U# ◦ ∂U# = 0, we define the k-th twisted homology group and the k-th locally finite
twisted homology group by

Hk(T#,U#) = ker(∂U# : Ck → Ck−1)/∂
U#(Ck+1), Hlf

k (T#,U#) = ker(∂U# : Clf
k → C

lf
k−1)/∂

U#(Clf
k+1),

respectively. An element of ker(∂U#) is called a twisted cycle.

8
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3.1.2 Twisted cohomology groups

Let Ωk(T#) be the space of the rational k-forms on Pk that have poles along Pk − T#. We set

ω# =
dU#
U#
∈ Ω1(T#).

Since ∇# = d + ω#∧ : Ωk(T#) → Ω
k+1(T#) satisfies ∇# ◦ ∇# = 0, we can define the k-th twisted

cohomology group by

Hk(Ω•(T#),∇#) = ker(∇ : Ωk(T#) → Ω
k+1(T#))/∇(Ω

k−1(T#)).

Let Ekc (T#) be the space of smooth k-forms on T# with compact support. By using E•c(T#) and ∇#,
we can also define the twisted cohomology group Hk(E•c(T#),∇#) with compact support.

Fact 3.3 (cf. [1], [3], [13]). Let # be A or C. Under Assumption 3.1, we have the following.

1. If k , m, then Hk(T#,U#) = 0, Hlf
k
(T#,U#) = 0, Hk(Ω•(T#),∇#) = 0 and Hk(E•c(T#),∇#) = 0.

2. A canonical map Hm(T#,U#) → Hlf
m(T#,U#) is an isomorphism.

3. There exists an isomorphism  : Hm(Ω•(T#),∇#) → Hm(E•c(T#),∇#).

4. dim Hm(T#,U#) = dim Hm(Ω•(T#),∇#) = 2m (= rank of E#).

3.2 Intersection pairings

3.2.1 Intersection pairing for twisted homology groups

By replacing U# with U−1
# = 1/U#, we can also define Hm(T#,U−1

# ) and Hlf
m(T#,U−1

# ). We
define the intersection pairing Ih between Hm(T#,U#) and Hlf

m(T#,U−1
# ) ' Hm(T#,U−1

# ).
Let

σ =
∑
i:fin.

ai · ∆i ⊗ U#,∆i (t), τ =
∑
j

bj · ∆
′
j ⊗ U#,∆′j (t)

−1

be twisted cycles, where each pair (∆i,∆′j) does not intersect or intersects transversally. Their
intersection number is defined by

Ih(σ, τ) =
∑

p∈∆i∩∆
′
j

aibj · (∆i,∆
′
j)p ·U#,∆i (p) ·U#,∆′j (p)

−1,

where (∆i,∆′j)p is the topological intersection number of ∆i and ∆′j at p.

3.2.2 Intersection pairing for twisted cohomology groups

We can define the intersection pairing Ic between Hm(Ω•(T#),∇#) and Hm(Ω•(T#),∇
∨
# ), where

∇∨# = d − ω#∧.
By using the isomorphism  : Hm(Ω•(T#),∇#)

∼
−→ Hm(E•c(T#),∇#) in Fact 3.3, we can define

the intersection number by

Ic(ϕ, ψ) =

∫
T

(ϕ) ∧ ψ (φ ∈ Hm(Ω•(T#),∇#), ψ ∈ Hm(Ω•(T#),∇
∨
# )).

Note that we regard T# ⊂ P
k as a 2k-dimensional real manifold.

9
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3.2.3 Twisted period relations

By using the intersection pairings, we can obtain twisted period relations. In this section, we
give only results. For details, see [15].

Let {τj}j=1,...,2m ⊂ Hm(T#,U#) and {ψj}j=1,...,2m ⊂ Hm(Ω•(T#),∇#) be bases. We set

H =
(
Ih(τi, τ

∨
j )

)
i, j=1,...,2m

, C =
(
Ic(ψi, ψj)

)
i, j=1,...,2m

,

Π+ =
( ∫

τj

U#ψi

)
i, j=1,...,2m

, Π− =
( ∫

τ∨j

U−1
# ψi

)
i, j=1,...,2m

,

where τ∨j ∈ Hm(T#,U−1
# ) ' Hlf

m(T#,U−1
# ) is a twisted cycle defined by the same manner as τj with

respect to U−1
# . Thus, we obtain the twisted period relation

Π+
tH−1 t

Π− = C.

Note that the entries of Π± are hypergeometric integrals.
If the intersection matrix H is diagonal, then its (i, j)-entry gives a simple relation:

2m∑
k=1

1
Ih(τk, τ

∨
k
)

∫
τk

U#ψi

∫
τ∨
k

U−1
# ψj = I

c(ψi, ψj). (13)

In this article, we construct a basis of the twisted homology group such that the intersection matrix
is diagonal, and we rewrite this relation in terms of FA or FC .

4. Twisted cycles and twisted period relations for FA and FC

As mentioned in the previous section, if the homology intersection matrix is diagonal, then
we can obtain simple quadratic relations. In fact, cycles corresponding to series solutions (5) and
(6) satisfy this property in our cases. In this section, we explain how to construct such cycles and
rewrite the twisted period relation (13) in terms of FA or FC .

4.1 Regularization of the m-simplex

Before constructing the twisted cycles for FA and FC , we recall the regularization of the m-
simplex ∆m. The regularization of a locally finite twisted cycle is a twisted cycle that represents
the inverse image of the canonical isomorphism Hm → Hlf

m (for FA and FC , the isomorphism is
mentioned in Fact 3.3). When m = 1, the regularization of the open interval ∆1 = (0, 1) ⊂ R is
explained in [15]. Similarly to m = 1, we can construct the regularization of the m-simplex for
m ≥ 2.

As an example, we consider the case when m = 2. We set the multi-valued function U(t) =
td1
1 td2

2 (1 − t1 − t2)d3 on T = C2 − ((t1 = 0) ∪ (t2 = 0) ∪ (1 − t1 − t2 = 0)). For general cases, refer
to [1]. Let us construct the regularization of the locally finite twisted cycle ∆2 ⊗ U ∈ Hlf

2 (T,U)
associated with the 2-simplex

∆
2 = {(t1, t2) ∈ R2 | t1 > 0, t2 > 0, 1 − t1 − t2 > 0}.

10
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As in the right side of Figure 1, let 4 be the small triangle included in ∆2 and Ii (i = 1, 2, 3) be
its boundary. We denote by Si (i = 1, 2) a positively oriented circle in the ti-space starting from
the projection of Ii to this space and surrounding the divisor (ti = 0), and denote by S3 a positively
oriented circle with a small radius in the orthogonal complement of the divisor (1 − t1 − t2 = 0)
starting from the projection of I3 to this space and surrounding the divisor. The twisted cycle ∆2⊗U
is equal to a finite cycle

∆
2
reg = 4 ⊗ U +

3∑
i=1

(Si × Ii) ⊗ U
1 − δi

+
∑

(i, j)=(1,2),(2,3),(3,1)

(Si × Sj) ⊗ U
(1 − δi)(1 − δj)

in Hlf
2 (T,U), where δi = e2π

√
−1di . Thus, ∆2

reg ∈ H2(T,U) gives the regularization of ∆2 ⊗ U.

Figure 1: ∆2 and its regularization

4.2 FC

We construct a basis of the twisted homology group that corresponds to the basis (6) of the
solution space of EC , which are expressed by FC . As an application, we give some quadratic
relations between FC .

4.2.1 Twisted cycles corresponding to series solutions

Assume that x1, . . . , xm are sufficiently small positive real numbers. We construct a twisted
cycle ∆i1 · · ·ir such that the integral

∫
∆i1 ···ir

UC
dt∏

tk (1−
∑
tk )

coincides with the series solution

f i1 · · ·ir
C

=

r∏
p=1

x
1−cip
ip

· FC

(
a + r −

r∑
p=1

cip, b + r −
r∑

p=1
cip, c

I ; x
)
(I = {i1, . . . , ir } ⊂ {1, . . . ,m}),

up to Γ-factors.

Remark 4.1. Because of f ∅
C
= FC(a, b, c1, . . . , cm; x), ∆∅ is nothing but the twisted cycle ∆ men-

tioned in Section 2.2.3.

We fix I = {i1, . . . , ir } ⊂ {1, . . . ,m}, and put { j1, . . . , jm−r } = {1, . . . ,m}− I. In the discussion
below, the index p (resp. q) runs from 1 to r (resp. from 1 to m − r). We consider the change of

11
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variables

tip =
xip
sip

, tjq = sjq (14)

in the integral ∫ ∏
t−ck
k
·

(
1 −

∑
tk
)∑ ck−a−m

(
1 −

∑ xk
tk

)−b
dt,

formally. Then we have∏
p

x
1−cip
ip

·

∫ ∏
p

s
cip−2
ip

·
∏
q

s
−c jq
jq

·

(
1 −

∑
p

xip
sip
−

∑
q

sjq

)∑
ck−a−m (

1 −
∑
p

sip −
∑
q

xjq
sjq

)−b
ds.

We set

UC,I (s) =
∏
p

s
cip−2
ip

·
∏
q

s
−c jq
jq
·

(
1 −

∑
p

xip
sip
−

∑
q

sjq

)∑
ck−a−m (

1 −
∑
p

sip −
∑
q

xjq
sjq

)−b
.

If we construct a twisted cycle ∆̃i1 · · ·ir (in s-coordinates) such that∫
∆̃i1 ···ir

UC,I (s) ds = (constant) · FC

(
a + r −

∑
p

cip, b + r −
∑
p

cip, c
I ; x

)
,

then its image ∆i1 · · ·ir ∈ Hm(TC,UC) (in t-coordinates) under the map (14) gives a desired one.
In Rm ⊂ Cm, the set

sk > 0, 1 −
∑ xip

sip
−

∑
sjq > 0, 1 −

∑
sip −

∑ xjq
sjq

> 0

is bounded region which includes the direct product

σi1 · · ·ir =

{
(s1, . . . , sm) ∈ Rm

����� sip > ε, 1 −
∑

sip > ε,

sjq > ε, 1 −
∑

sjq > ε

}
of an r-simplex and an (m − r)-simplex, for some ε > 0. We construct a twisted cycle ∆̃i1 · · ·ir by
using σi1 · · ·ir and “ε-neighborhood” of (s1 = 0), . . . , (sm = 0), (1 −

∑
sip = 0), (1 −

∑
sjq = 0).

Example 4.2 (Example for m = 2).

• If I = ∅, ∆̃∅ = ∆̃ is given as Figure 2. In this case, we have t1 = s1, t2 = s2 and ∆̃ = ∆.
Precisely, it is written as

∆ = σ ⊗ UC +
(S1 × I1) ⊗ UC

1 − γ−1
1

+
(S2 × I2) ⊗ UC

1 − γ−1
2

+
(S3 × I3) ⊗ UC

1 − γ1γ2α−1

+
(S1 × S2) ⊗ UC

(1 − γ−1
1 )(1 − γ

−1
2 )
+

(S2 × S3) ⊗ UC

(1 − γ−1
2 )(1 − γ1γ2α−1)

+
(S3 × S1) ⊗ UC

(1 − γ1γ2α−1)(1 − γ−1
1 )

,

where α = e2π
√
−1a, γk = e2π

√
−1ck and the radius of the circle Si is ε.

12
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Figure 2: ∆̃ for m = 2 Figure 3: ∆̃1 for m = 2

• If I = {1}, ∆̃1 is given as Figure 3.

In any cases, some circles may surround two divisors.

Proposition 4.3 ([3]).∫
∆̃i1 ···ir

UC,I (s) ds =

∏
p Γ(cip − 1) ·

∏
q Γ(1 − cjq ) · Γ(

∑
ck − a − m + 1)Γ(1 − b)

Γ(
∑

p cip − a − r + 1)Γ(
∑

p cip − b − r + 1)

· FC

(
a + r −

∑
p

cip, b + r −
∑
p

cip, c
I ; x

)
.

Proof. Consider the power series expansion of the left-hand side with respect to x1, . . . , xm. By
our construction, this expansion converges uniformly. As a coefficient of xn1

1 · · · x
nm
m in the power

series expansion, the integral∫
∆̃i1 ···ir

∏
p

s
cip−nip−2
ip

∏
q

s
−c jq−n jq

jq
·

(
1 −

∑
p

sip
)−b−∑ n jq

(
1 −

∑
q

sjq
)∑ ck−a−m−

∑
nip

ds (15)

appears. If we regard ∆̃i1 · · ·ir as a twisted cycle loading this integrand, each circle in ∆̃i1 · · ·ir surrounds
only one divisor. Thus, ∆̃i1 · · ·ir is nothing but the regularization of the direct product of two simplices
∆r (in (si)i∈I -coordinates) and ∆m−r (in (sj)j∈J -coordinates). The integral (15) is equal to∫
∆r

∏
p

s
cip−nip−2
ip

(
1 −

∑
p

sip
)−b−∑ n jq

dsI ·
∫
∆m−r

∏
q

s
−c jq−n jq

jq

(
1 −

∑
q

sjq
)∑ ck−a−m−

∑
nip

dsIc

=

∏
p Γ(cip − nip − 1) · Γ(−b −

∑
q njq + 1)

Γ(−b +
∑

p cip −
∑

nk − r + 1)
·

∏
q Γ(−cjq − njq + 1) · Γ(

∑
ck − a − m −

∑
p nip + 1)

Γ(
∑

p cip − a −
∑

nk − r + 1)
,

where dsI = dsi1 ∧ · · · ∧ dsir , dsI c = dsj1 ∧ · · · ∧ dsjm−r . By using Γ(z)Γ(1 − z) = π/sin(πz) and
(a)n = Γ(a + n)/Γ(a), we obtain the proposition. �

Therefore, we obtain a twisted cycle corresponding to the solution f i1 · · ·ir
C

.

13
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Theorem 4.4 ([3]). Let ∆i1 · · ·ir be the twisted cycle in TC which is obtained as the image of ∆̃i1 · · ·ir
under the correspondence tip =

xip
sip

, tjq = sjq . Then we have∫
∆i1 ···ir

∏
t−ck
k
· (1 −

∑
tk)

∑
ck−a−m ·

(
1 −

∑ xk
tk

)−b
dt

=

∏
p Γ(cip − 1) ·

∏
q Γ(1 − cjq ) · Γ(

∑
ck − a − m + 1)Γ(1 − b)

Γ(
∑

p cip − a − r + 1)Γ(
∑

p cip − b − r + 1)
· f i1 · · ·ir

C
.

Proof. Consider the change of variables (14), and use Proposition 4.3. �

Theorem 4.5 ([3]). We put α = e2π
√
−1a, β = e2π

√
−1b, γk = e2π

√
−1ck .

1. I , I ′ =⇒ Ih(∆I,∆∨I ′) = 0;

2. Ih(∆i1 · · ·ir ,∆
∨
i1 · · ·ir
) = (−1)r ·

∏
q γjq · (α −

∏
p γip )(β −

∏
p γip )∏

k(γk − 1) · (α −
∏

k γk) (β − 1)
.

Sketch of the proof. 1. Since the function f IC corresponding to ∆I has the same monodromy
property as

∏
i∈I x1−ci

i around x = (0, . . . , 0), the claim follows from the monodromy invari-
ance of Ih.

2. The self-intersection number of ∆i1 · · ·ir coincides with that of ∆̃i1 · · ·ir . By using the results in
[9], we can evaluate it.

�

4.2.2 Cohomology intersection numbers

Except for m = 2 (Appell’s F4), we do not have so many results for intersection numbers of the
twisted cohomology groups.

Theorem 4.6 ([3]). We put

ϕ =
dt1 ∧ · · · ∧ dtm∏
k tk · (1 −

∑
k tk)

, ϕ′ =
dt1 ∧ · · · ∧ dtm∏

tk · (1 −
∑

tk) · (1 −
∑ xk

tk
)
.

Then we have

Ic(ϕ, ϕ′) = 0,

Ic(ϕ, ϕ) =
(
2π
√
−1

)m (
1∑

ck − a − m + 1
+

1
b + m −

∑
ck

) ∑
{I (r ) }

m−1∏
r=1

1
b + r −

∑
c
i
(r )
p

,

where {I(r)} is a sequence of subsets of {1, . . . ,m} such that

{1, . . . ,m} ) I(m−1) ) · · · ) I(2) ) I(1) , ∅,

and we write I(r) = {i(r)1 , . . . , i(r)r }.

Roughly speaking, intersection numbers are evaluated as∑
P: intersection point of m divisors

Rest=P(some differential form),

if the pole divisor of ωC = d log UC are normally crossing ([12]). In this case, we need to blow up
Cm. For detailed calculations, refer to [3].

14
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4.2.3 Twisted period relations for FC

Since the intersection matrix H with respect to the basis {∆I }I ⊂ Hm(TC,UC) is diagonal by
Theorem 4.5, we obtain twisted period relations (13) as follows:

Ic(ϕ, ϕ′) =
∑
I

1
Ih(∆i1 · · ·ir ,∆

∨
i1 · · ·ir
)
·

∫
∆i1 . . .ir

UC ϕ ·

∫
∆∨i1 . . .ir

U−1
C ϕ′,

Ic(ϕ, ϕ) =
∑
I

1
Ih(∆i1 · · ·ir ,∆

∨
i1 · · ·ir
)
·

∫
∆i1 . . .ir

UC ϕ ·

∫
∆∨i1 . . .ir

U−1
C ϕ.

By Theorem 4.4, these integrals are expressed by FC . Thus, we obtain two quadratic relations

0 =
∑
I

(−1)r (ai1 · · ·ir − 1) · FC(ai1 · · ·ir , bi1 · · ·ir , c
i1 · · ·ir ; x) · FC(2 − ai1 · · ·ir , 1 − bi1 · · ·ir , č

i1 · · ·ir ; x),

and

(1 − a + b) ·
∏
(1 − ck)

bb1· · ·m
·

∑
{I (r ) }

m−1∏
r=1

1
bI (r )

=
∑
I

(−1)r
1 − ai1 · · ·ir

bi1 · · ·ir
· FC(ai1 · · ·ir , bi1 · · ·ir , c

i1 · · ·ir ; x) · FC(2 − ai1 · · ·ir ,−bi1 · · ·ir , č
i1 · · ·ir ; x),

where we put

ai1 · · ·ir = a + r −
∑

cip, bi1 · · ·ir = b + r −
∑

cip, či1 · · ·ir = (2, . . . , 2) − ci1 · · ·ir .

4.2.4 Twisted period relations for Appell’s F4 (m = 2)

In the case of m = 2, we have more results. In [6], we put

ϕ1 =
dt1 ∧ dt2

t1t2(1 − t1 − t2)
, ϕ2 =

dt1 ∧ dt2
t2(1 − t1 − t2)

,

ϕ3 =
dt1 ∧ dt2

t1(1 − t1 − t2)
, ϕ4 =

dt1 ∧ dt2
(1 − t1 − t2)(t1t2 − t2x1 − t1x2)

and evaluate their intersection matrix. For example,

Theorem 4.7 ([6]).

Ic(ϕ4, ϕ4) =
2 ·

(
2π
√
−1

)2

(c1 + c2 − a − 2) · (−b)
·

1
x2

1 + x2
2 − 2x1x2 − 2x1 − 2x2 + 1

.

Note that x2
1 + x2

2 − 2x1x2 − 2x1 − 2x2 + 1 is a factor of the defining polynomial of the singular
locus SC (see Section 2.3.3). By using this intersection number, we obtain the following relation:

b(a − 1)F4(a, b + 1, c1, c2; x) · F4(2 − a, 1 − b, 2 − c1, 2 − c2; x)

− b1(a1 − 1)F4(a1, b1 + 1, 2 − c1, c2; x) · F4(2 − a1, 1 − b1, c1, 2 − c2; x)

− b2(a2 − 1)F4(a2, b2 + 1, c1, 2 − c2; x) · F4(2 − a2, 1 − b2, 2 − c1, c2; x)

+ b12(a12 − 1)F4(a12, b12 + 1, 2 − c1, 2 − c2; x) · F4(2 − a12, 1 − b12, c1, c2; x)

=
2(1 − c1)(1 − c2)

x2
1 + x2

2 − 2x1x2 − 2x1 − 2x2 + 1
.

15
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4.3 FA

We can apply a similar argument for FA. We introduce some results, and omit detailed
calculations.

4.3.1 Twisted cycles corresponding to series solutions

For I = {i1, . . . , ir } ⊂ {1, . . . ,m}, we put { j1, . . . , jm−r } = {1, . . . ,m} − I. We consider the
change of variables

tip =
sip
xip

, tjq = sjq

in the integral (11), formally. Similarly to Section 4.2.1, we can construct a twisted cycle ∆̃i1 · · ·ir (in
s-coordinates) such that∫
∆̃i1 ···ir

∏
p

s
cip−2
ip

(
1 −

xip
sip

)cip−bip−1
·

(
1 −

∑
p

sip −
∑
q

xjq sjq
)−a
·
∏
q

s
b jq−1
jq

(1 − sjq )
c jq−b jq−1ds

= (constant) · FA

(
a + r −

∑
p

cip, b
I, cI ; x

)
.

Then, we obtain the following theorems.

Theorem 4.8 ([4]). We can construct twisted cycles ∆i1 · · ·ir ∈ Hm(TA,UA) corresponding to the
series solutions:∫

∆i1 ···ir

∏ (
tbk

k
· (1 − tk)ck−bk−1

)
·

(
1 −

∑
xk tk

)−a
dt

= eπ
√
−1(

∑
bip−

∑
cip+r) ·

Γ(1 − a)
∏

p Γ(cip − 1)
Γ(

∑
p cip − a − r + 1)

·
∏
q

Γ(bjq )Γ(cjq − bjq )

Γ(cjq )
· f i1 · · ·ir

A
.

Theorem 4.9 ([4]). We put α = e2π
√
−1a, βk = e2π

√
−1bk , γk = e2π

√
−1ck .

1. I , I ′ =⇒ Ih(∆I,∆∨I ′) = 0;

2. Ih(∆i1 · · ·ir ,∆
∨
i1 · · ·ir
) =

α −
∏

p γip

(α − 1)
∏

p(1 − γip )
·
∏
q

βjq (1 − γjq )
(1 − βjq )(βjq − γjq )

.

Remark 4.10. In [11], our construction of twisted cycles corresponding to series solutions is
generalized to a regular holonomic GKZ-hypergeometric system (A-hypergeometric system) which
is associated with an integer matrix A. When A has a unimodular triangulation, their intersection
numbers have been also obtained in [11]. In the other cases, the intersection numbers are studied
in [5].

4.3.2 Cohomology intersection numbers

In [13], the intersection matrix with respect to the basis

ϕi1 · · ·ir =
dt1 ∧ · · · ∧ dtm∏
p(tip − 1) ·

∏
q tjq

(
I = {i1, . . . , ir } ⊂ {1, . . . ,m},
{ j1, . . . , jm−r } = {1, . . . ,m} − I

)
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of the twisted cohomology group Hm(Ω•(TA),∇A) is evaluated.
For I = {i1, . . . , ir } ⊂ {1, . . . ,m}, we put

Ai1 · · ·ir = AI =
∑
{I (l) }

r∏
l=1

1
a −

∑
c
i
(l)
p
+ l

,

where {I(l)} is a sequence of subsets of I such that

I = I(r) ) I(r−1) ) · · · ) I(2) ) I(1) , ∅.

Fact 4.11 ([13]). We have

Ic(ϕI, ϕI ′) =
(
2π
√
−1

)m
·

∑
N ⊂{1,...,m}

(
AN

∏
n<N

δI,I ′(n)

b̃I,I ′(n)

)
,

where

δI,I ′(n) =

{
1 (n ∈ (I ∩ I ′) ∪ (Ic ∩ I ′c)),
0 (otherwise),

b̃I,I ′(n) =

{
cn − 1 − bn (n ∈ I ∩ I ′),
bn (n ∈ Ic ∩ I ′c).

4.3.3 Twisted period relations for FA

We write one example of quadratic relations. The twisted period relation (13) with respect to
Ic(ϕ∅, ϕ12· · ·m) and the basis {∆I } ⊂ Hm(TA,UA) is reduced into the relation∏

(1 − ck)
a

·
∑
{I (l) }

r∏
l=1

1
a −

∑
p c

i
(l)
p
+ l
=

∑
I

(−1)r

aI
· FA(aI, bI, cI ; x) · FA(−aI, b̌I, čI ; x),

where a sequence {I(l)} is same as Section 4.2.2, and we put

aI = ai1 · · ·ir = a + r −
∑
p

cip,{
bIip = bip + 1 − cip,

bIj = bj,

{
cIip = 2 − cip,

cIj = cj
(ip ∈ I, j < I),

b̌I = (1, . . . , 1) − bI, čI = (2, . . . , 2) − cI .
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