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1. Introduction

One of us had the good fortune to participate in the meeting on Intersection Theory & Feynman
Integrals held in Padova in December 2019, nicknamed MathemAmplitudes 2019. Intersection
Theory is a venerable branch of Algebraic Geometry, with roots grounded in the very origin of the
subject and many ramifications tracing its history to the present day. It is a vast field, and it would
be futile to attempt a comprehensive review. The aspects of the theory with which we are most
familiar have a different flavor from the Intersection Theory used in the impressive new approach
to computations of Feynman integrals, presented in other seminars delivered in this workshop;
in this paper we will limit our discussion to the ‘standard’ Intersection Theory in the context of
scheme-theoretic Algebraic Geometry, developed by W. Fulton and R. MacPherson in the ’70s
and ’80s. This theory provided much-needed foundations for a large gamut of applications to
questions in Algebraic Geometry, for example classical enumerative questions and the study of
singularities. W. Fulton’s outstanding text [1] still stands as a complete and thorough account
of the foundations of this theory 35 years after its publication. For a further rich selection of
examples of applications of this classically inspired, but very modern, theory, the recent book [2]
can be heartily recommended. Through itsmanifold applications, Fulton-MacPherson’s intersection
theory has naturally come to interact with particle physics in different ways, for example in string
theory. It is hard to believe that there should not be a strong connection between this very mature
theory steeped in Algebraic Geometry and the Intersection Theory deployed so successfully in the
more strictly ‘MathemAmplitudes’ applications that were the main object of this workshop. We
view this as an interesting open question: To establish a direct interpretation of the intersection-
theoretic computations of Feynman integrals in [3–5] (and others) in terms of Fulton-MacPherson
intersection theory.

We will not address this question in this paper. Our main objective is to give a necessarily
incomplete overview of some ideas in Fulton-MacPherson intersection theory and of a few appli-
cations of this theory, and particularly to an aspect relating to high energy physics and to Feynman
integrals. These latter may seem natural candidates for a relation with the theme of the workshop,
but in all honesty we do not see a direct such connection. It may simply be that Intersection Theory
is vast enough to have several different manifestations in the theory of Feynman amplitudes.

The applicationwewill discuss employs the notion of characteristic classes beyond the classical
case of compact nonsingular varieties. We will summarize the theory underlying these classes
(originally due to MacPherson) after a short historical prelude and a rough exposition of the ideas
behind the main definition of intersection product. A review of our application of the theory to a
context inspired by quantum field theory will follow these preliminaries.

The emphasis throughout will be on what is now ‘classical’ intersection theory. We will
only mention very briefly more recent developments, such as the extension to stacks, quantum
cohomology, equivariant intersection theory, and pass over in silence much more.

2



P
o
S
(
M
A
2
0
1
9
)
0
1
2

Intersection theory, characteristic classes, and Feynman rules P. Aluffi and M. Marcolli

2. Intersection theory in Algebraic Geometry

2.1 A little history

Questions in enumerative geometry go so far back that it is impossible to identify a ‘first’ such
question. The problem of Apollonius (how many circles are tangent to 3 given circles?) dates back
to the second century B.C.; ancient geometric results, such as the Pappus hexagon theorem can also
be framed in terms close to intersection theory.

In a much more recent past, the introduction of coordinates in geometry in the XVII century led
to natural questions concerning the intersection of curves in the plane. Bézout’s theorem (∼1750)
may be interpreted as the first concrete manifestation of the intersection ring of projective space.
It states that two curves of degrees d1, d2 meeting transversally in complex projective plane must
meet in exactly d1d2 points. More generally, hypersurfaces of degrees d1, . . . , dn in complex n-
dimensional projective space Pn, must meet in d1 · · · dn points if they meet transversally. Modulo
many subtleties, this result may be understood as signifying that intersection theory in Pn occurs
in a ring isomorphic to Z[H]/(Hn+1): a degree-d hypersurface determines the class of dH in this
ring, and the coefficient of Hn in the product of the classes of a selection of hypersurfaces will
yield their intersection number, provided that needed transversality hypotheses are satisfied. More
generally, a subvariety V of Pn of codimension r will determine a class dHr in Z[H]/(Hn+1); the
coefficient d is the degree of the variety; and intersecting varieties transversally may be interpreted
as performing ordinary algebra in this ring.

Bézout’s theorem may already be used to analyze interesting geometric questions involving
e.g., the possible singularities of plane curves or the degrees of dual curves, and it leads naturally
to questions in enumerative geometry. It also raises foundational questions, such as the exact
definitions of intersection numbers and the role of intersection multiplicities to deal with non-
transversal intersections. In the classical school, such questions were often bypassed by tools such
as the ‘principle of conservation of number’ (which had been accepted in one form or another
since the XVII century) and Chasles’s ‘correspondence principle’: these lead to plausible results by
analyzing explicit degenerations of intersection-theoretic problems to more approachable problems
involving varieties in special positions.

The subject matured to an amazing degree. By 1880, Schubert had developed (by age 30!)
intersection theory with a marked modern flavor, including an explicit interpretation of intersection
operations as operations in a suitable ring, with hundreds of applications. Schubert calculus refers
to the intersection theory of Grassmannian, which may be reduced to the intersection of Schubert
varieties, expressing natural geometric conditions.

By then, intersection theory had been applied with great success to questions in enumerative
geometry. The epitomizing such question is: How many smooth conics are tangent to five smooth
conics in general position? The correct answer, 3,264 (cf. the title of [2]!), was obtained by Chasles
in the 1860s, and requires tools going beyond Bézout’s theorem: a straightforward application of
Bézout’s theorem to this question has to contendwith the presence of ‘excess intersection’; Chasles’s
principle of conservation of number offers an alternative.

Another such question is the determination of the number of smooth plane cubic curves that
are tangent to nine lines in general position. The number is 33,616, as found by Maillard in 1872.
The number of quartic plane curves tangent to 14 lines in general position (23,011,191,144) was
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determined by Zeuthen in 1873. The corresponding number for quintics or higher degree curves
was unknown in the 1870s, and it is just as unknown 150 years later.

These are very impressive results, and Schubert’s theory is sophisticated and extremely suc-
cessful, but it was recognized that tools such as the ‘principle of conservation of number’ lacked
rigor in their formulation. One of Hilbert’s famous 1900 problems consisted of providing firm
theoretical foundations for Schubert’s work. This natural question motivated substantial work in the
XX century, by a list of mathematicians that reads as a who’s who in algebraic geometry, starting
with Severi. Additional motivations came later in the century from the Weil conjectures, which
in time made it clear that it was necessary to extend the foundations of the theory to fields of
arbitrary characteristic and to the scheme-theoretic context; and from Riemann-Roch problems,
originally an indispensable tool in the study of the geometry of curves, but generalized by Hirze-
bruch, Grothendieck, and others to an interplay between the K-theory of vector bundles and coherent
sheaves on a scheme and its intersection group.

In the XX century, Schubert’s intersection ring evolved into the so-called ‘Chow ring’ of a
(nonsingular) variety, where intersection-theoretic computations may be performed. As a direct
offspring of the principle of conservation of number, the effect of intersecting with a subvariety, or
rather a ‘cycle’, that is, a formal linear combination of subvarieties, should not change if the cycle is
moved in a family parametrized by a projective line. Fibers of such a family are said to be ‘rationally
equivalent’; the elements of the Chow ring are rational equivalence classes of cycle. An approach
to the formalization of intersection theory can be distilled into a ‘moving lemma’, proving that two
given cycles may be moved in their rational equivalence classes so as to intersect transversally, and
that the class of their intersection is then independent of the chosen deformations. This program
was carried out in the ’50s, through work of Chow and others; but a sufficiently general form
of the moving lemma is actually extremely challenging, and there are reasons to believe that an
‘elementary’ proof of the moving lemma may simply not be available (cf. [2, §0.4.9]).

Ingredients of an alternative approach were introduced in the work of several other important
figures—Segre, Verdier, Kleiman, and others. In the ’70s and 80s, a complete and rigorous
Intersection Theory was achieved by Fulton and MacPherson. This is in the language of schemes,
over fields of arbitrary characteristic, and does not require a moving lemma; in fact, by providing a
well-defined intersection product, the theory offers the most direct proof of the general form of the
moving lemma. Every scheme has a Chow group of cycles modulo rational equivalence, and the
theory studies operations that act on these cycles. If the scheme is nonsingular, then intersecting
with a cycle may itself be interpreted as one of these operations, and the Chow group acquires a
natural ring structure. This recovered and unified all partial results obtained in the previous decades
and offered concrete tools for computations in e.g., enumerative geometry.

It is worth pointing out that the Chow group shares features expected of a homology theory;
for example, it is a covariant functor. The Chow ring of a nonsingular variety likewise behaves
as a cohomology theory: it acts on the Chow group, and is a contravariant functor. In fact,
when the context allows (e.g., for complex varieties), there are natural homomorphisms from
the algebraic Chow theory to homology and cohomology (particularly Borel-Moore homology;
cf. [1, Chapter 19]), matching the algebro-geometric intersection operations with the corresponding
topological ones. For varieties admitting a cellular decomposition, such as Grassmannians or
flag manifolds, this ‘cycle map’ is in fact an isomorphism (cf. [1, Example 19.1.11]), so in such
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case there in fact is an isomorphism between the Chow ring and cohomology. However, beyond
these poster cases the situation is quite different; for example, the dimension-0 Chow group of a
complex elliptic curve is infinitely generated. Further, differential forms, which are a key tool of the
intersection theory employed in the ‘MathemAmplitudes’ applications, are not a native ingredient
in the scheme-based Fulton-MacPherson intersection theory. In this theory, even Chern classes of
bundles are defined without reference to differential forms; the theory is not modeled in any direct
sense after Chern-Weil theory.

2.2 Informal overview

We recall the basic definitions, without aiming at full generality, and stressing the intuitive
aspects at the price of inevitable lack of precision. The reader is referred to [1] for a complete and
efficiently organized account of the theory.

Let V be an algebraic variety over an algebraically closed field k. A cycle of dimension k on V
is a formal linear combination of k-dimensional closed subvarieties of V , with integer coefficients;
Zk (V ) denotes the group of k-dimensional cycles, and we let Z∗(V ) be the direct sum ⊕k≥0 Zk (V ).
A rational function on V , i.e., a regular function f : V → P1, determines a family of cycles: for
all p ∈ P1, f −1(p) may be written as a union of codimension-1 subvarieties, taken with suitable
multiplicities. We define a relation on Zk (V ) by prescribing that two cycles X and Y be related if
there exists a (k + 1)-dimensional subvariety W ⊆ V and a regular function f : W → P1 such that
X = f −1(0) andY = f −1(∞). This prescription extends to an equivalence relation on Zk (V ), called
rational equivalence. The k-th Chow group of V is the group Ak (V ) of cycles on V modulo the
subgroup determined by elements of the form α − β, where α, β ∈ Zk (V ) are rationally equivalent.
The Chow group of V is the direct sum ⊕k Ak (V ).

If ϕ : V → V ′ is a proper map, a push-forward ϕ∗ : Z∗(V ) → Z∗(V ′) is defined: If [X] is
the cycle determined by a subvariety X of V , then X ′ := ϕ(X ) is a subvariety of V ′ (since ϕ is
proper), and we can let ϕ∗([X]) = d · [X ′], where d denotes the degree of the restriction of ϕ to
X . (Over e.g., C, d is the number of points in a general fiber of ϕ|X , or 0 if the fiber is positive-
dimensional.) This prescription preserves rational equivalence, so descends to a push-forward
ϕ∗ : A∗(V ) → A∗(V ′). Further, it satisfies (ϕ ◦ψ)∗ = ϕ∗ ◦ψ∗, so it defines A∗ as a covariant functor
from the category of algebraic k-varieties (along with proper morphisms) to abelian groups.

A contravariant pull-back is also defined, for a restricted class of morphisms. For example,
if f : W → V is a flat morphism, then one can define f ∗([X]) = [ f −1(X )] for every closed
subvariety X of V , and extending this prescription by linearity gives a homomorphism of abelian
groups Ak (V ) → Ak+dimW−dimV (W ) for all k ≥ 0. For example, if E is a vector bundle on V
and π : E → V denotes the projection, we have a homomorphism π∗ : A∗(V ) → A∗(E). One
can prove that this is an isomorphism. (In the context of complex geometry this is perhaps not
surprising, given the analogy between the Chow group and homology and the fact that the fiber of
E are contractible. However, such considerations do not suffice, and are not needed, for the proof
of this statement in the general setting of schemes.) Therefore, we may let s∗ : A∗(E) → A∗(V )
be the inverse of π∗. This is the Gysin homomorphism, mapping A∗k (E) to Ak−rk E (V ). As the
zero-section s : V → E is a right-inverse of π, it is natural to view s∗ as a pull-back of classes along
the zero-section of E, which may be identified with V . If β ∈ A∗(E) is any rational equivalence
class in E, we can set V · β := s∗(β) to be the ‘intersection product’ of β by the zero-section in E.
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Modulo a deformation argument, this basic intersection operation yields a very general defini-
tion of intersection product, as follows.

A subscheme of a vector bundle is a cone if it is so fiberwise. Every closed subscheme X ⊆ V
determines a normal cone CXV ; for example, if X = (0, . . . , 0) is the origin in affine n-space An,
and V is the hypersurface defined by a polynomial F (x0, . . . , xn) vanishing at the origin, then CXV
is the cone defined by the homogeneous terms of lowest degree in F. In general, the projectivization
ofCXV may be realized as the exceptional divisor in the blow-up ofV along X . A pure-dimensional
subscheme X is regularly embedded in V if it is locally defined by dim V − dim X equations;
equivalently, if its normal cone is a vector bundle. This normal bundle is then denoted NXV .
Every closed embedding X ⊆ V admits a ‘deformation to the normal cone’, replacing it with the
embedding of X as the zero-section in CXV . Given now two subvarieties X and Y of V , assume
that X is regularly embedded. The embedding X ⊆ V may then be deformed to the embedding of
the zero-section X ⊆ NXV ; the embedding Y ⊆ V is simultaneously deformed to the embedding
of the cone CX∩YY in NXV . The modern version of the ‘principle of continuity’ amounts to the
assertion that the intersection product X · Y should be preserved under such deformations. We can
then define it to equal the intersection product of the zero-section with the cone CX∩YY in the vector
bundle NXV : as discussed above, this product admits a natural definition by means of the Gysin
homomorphism.

The following diagram is a good mnemonic device for the intersection product we just intro-
duced:

X ∩ Y �
� //

i
��

Y

��
X �
� // V

The bottom embedding is assumed to be regular, so it has a normal bundle NXV . The intersection
product X · Y ∈ A∗(V ) may be defined as the push-forward of the intersection product of the
zero-section of NXV with the cone CX∩YY .

Remark 2.1. In fact, CX∩YY is naturally a subscheme of the restriction i∗(NXV ) of NXV to the
subscheme X ∩Y

i
↪→ X ; we can define X ·Y as a class in A∗(X ∩Y ) to be the intersection product

of the zero-section of this restriction with the cone CX∩YY . This definition agrees with the one
sketched above after push-forward to A∗(V ), and it is often advantageous to define the product as a
class in the smallest subscheme that can support it.

We also note that the definition can in fact be given for any variety Y mapping to V , not just
for closed subvarieties of V . For a complete discussion of the definition of intersection product, we
refer the reader to [1, Chapter 6]. y

A more explicit ‘computational’ description of the intersection product introduced here will
be given below.

2.3 The intersection ring of a nonsingular variety

The definition sketched above extends by linearity to a product of any rational equivalence
class α in A∗(V ) by a regularly embedded subvariety X ⊆ V . This product is well-defined as an
operator on A∗(V ), and satisfies all expected properties.

6
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However, this does not suffice in order to define a ring structure on the Chow group A∗(V ),
mainly due to the requirement that the intersecting variety X be regularly embedded in V . However,
if V is nonsingular, then there is a systematic way to reduce any intersection product to a product by
a regularly embedded subvariety. The basic observation is that ifV is nonsingular, then the diagonal
embedding ∆ : V → V × V is a regular embedding; in fact, its normal bundle is isomorphic to the
tangent bundle TV of V . We may then consider the following intersection diagram:

X ∩ Y �
� //

��

X × Y

��
V �
� ∆ // V × V

based on the observation that X∩Y is isomorphic to the scheme-theoretic intersection of the diagonal
with X × Y in the product V × V . In this situation we can set X · Y ∈ A∗(V ) to be the intersection
productV · (X×Y ) inV ×V , defined as discussed in §2.2. It can be shown that this product preserves
rational equivalence, and it extends by linearity to a bilinear map A∗(V ) × A∗(V ) → A∗(V ). This
operation is associative and distributive with respect to the group operation in A∗(V ), hence it
defines A∗(V ) as a ring.

This is the intersection (Chow) ring of the nonsingular variety V . A complete discussion of
this construction may be found in [1, Chapter 8].

2.4 Chern and Segre classes

Intersection-theoretic operations arise as operators on the Chow group; above we have inter-
preted the intersection by a regularly embedded subvariety ofV as an operator on A∗(V ). As another
important example, a rank-r vector bundle E on V determines ‘Chern classes’ ci (E), i = 0, . . . , r ,
as operators on A∗(V ). We write ci (E) ∩ α for the result of applying the operator ci (E) to the
rational equivalence class α. The i-th Chern class decreases dimension by i: the operator ci (E)
maps Ak (V ) to Ak−i (V ). The operator c0(E) is the identity. One collects the individual Chern
classes into a single operator

c(E) := 1 + c1(E) + · · · + crk E (E) ,

the ‘total Chern class’ of E.
If E is sufficiently ample, then ck (E) ∩ [V ] is the class of the locus where rk E − k + 1 general

sections of E are linearly dependent. In particular, crk E (E) ∩ [V ] is the class of the zero-scheme of
a regular section of E. As a template example, if L is a line bundle admitting a regular section s,
then the operator c1(L) on A∗(V ) coincides with the intersection product by the zero-scheme D of
s, a Cartier divisor of V : the embedding D ⊆ V is regular, so this intersection was defined in §2.2.
In other words

c(L) ∩ α = (1 + D) · α

for all α ∈ A∗(V ). As L is isomorphic to the line bundle O(D) determined by D, this discussion
may be summarized by the equality

c(O(D)) = 1 + D ,

7
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holding for all Cartier divisors D of V .
In fact, Chern classes may be defined in general by means of the case of line bundles. The

Segre class of a vector bundle E on a variety V (or, more generally, a scheme) is defined as an
operator on A∗(V ) by

s(E) ∩ α := π∗ *
,

∑
i≥0

c(O(1))i ∩ π∗(α)+
-

,

where π : P(E) → V is the projective bundle (of lines) associatedwith E, andO(1) is the hyperplane
bundle on P(E) (i.e., the dual to the tautological subbundle). One can show that s(E) is invertible
as an operator on A∗(V ), and then define

c(E) := s(E)−1 .

This notion satisfies all the expected properties of Chern classes: it is preserved by pull-backs,
satisfies a projection formula f∗(c( f ∗E) ∩ α) = c(E) ∩ f∗(α), and the ‘Whitney formula’: if

0 // E ′ // E // E ′′ // 0 (1)

is an exact sequence of vector bundles on V , then

c(E) = c(E ′)c(E ′′)

as operators on A∗(V ). The operator ci (E) equals 0 if i > rk E.
It is useful to extend the Segre class operation to more general objects. A cone C ⊆ E

determines a subscheme P(C) of P(E), and this inherits by restriction a tautological bundle O(1)
and a projection π to V . One can then define the Segre class of C by

s(C) := π∗ *
,

∑
i≥0

c(O(1))i ∩ [P(C)]+
-

.

The case of the normal cone CZ (V ) of a closed subscheme Z ( V is particularly important: we
define the Segre class of Z in V to be the Segre class of this cone:

s(Z,V ) := s(CZV ) . (2)

(If Z = V , one can set s(CZV ) = [V ].) If Z is regularly embedded in V , so that the normal cone is
the normal bundle, this definition yields

s(Z,V ) = c(NZV )−1 ∩ [Z] . (3)

For example, this formula holds if Z and V are both nonsingular, or if Z is the complete intersection
of a choice of codimZ V divisors in V .

If Z = D is itself a Cartier divisor, then the normal bundle NDV is (the restriction of) O(D),
therefore (3) gives

s(D,V ) = c(O(D))−1 ∩ [D] = (1 + D)−1 · [D] = (1 − D + D2 − · · · ) · [D] . (4)

8
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One key property of Segre classes is their birational invariance: if ν : Ṽ → V is a proper
birational map, then for every closed subscheme Z of V we have

ν∗s(ν−1(Z ), Ṽ ) = s(Z,V ) . (5)

In the particular case where ν : Ṽ → V is the blow-up of V along Z , so that E = ν−1(Z ) is the
exceptional divisor, (4) and (4) give

s(Z,V ) = ν∗((1 − E + E2 − E3 + · · · ) · [E]) .

As E is in fact isomorphic to P(CZV ), this formula is just a restatement of the definition (2).

2.5 The intersection product in terms of Chern and Segre classes

The zero-section Z of a vector bundle E on a variety V is regularly embedded, and its normal
bundle is E itself. It is useful to ‘complete’ the vector bundle E by adding a hyperplane at infinity,
thereby replacing it with P(E ⊕ OV ). Then the ‘intersection with the zero-section’, i.e., the Gysin
homomorphism s∗ introduced in §2.2, admits the following description. Let α ∈ Ak (E). Then

s∗(α) =



c(E) ∩ p∗ *
,

∑
i≥0

c(O(1))i ∩ α+
-


k−rk E

where {· · · }` is the term of dimension ` in the class within braces, and α is any class on P(E ⊕ OV )
extending α. (This formula is a restatement of [1, Proposition 3.3].) In the situation represented by
the diagram shown earlier,

X ∩ Y �
� //

i
��

Y

��
X �
� // V

with X,Y subvarieties of V , and X regularly embedded, this formula gives the following expression
for the intersection product:

X · Y =
{
c(i∗NXV ) ∩ s(X ∩ Y,Y )

}
dim X+dimY−dimV (6)

([1, Proposition 6.1(a)]). IfV is nonsingular, then the intersection product of the rational equivalence
classes of two subvarieties X,Y (without further hypotheses) corresponds to the diagram

X ∩ Y �
� //

i
��

X × Y

��
V �
� ∆ // V × V

(cf. §2.3) and is given by

X · Y = i∗
{
c(i∗TV ) ∩ s(X ∩ Y, X × Y )

}
dim X+dimY−dimV ∈ A∗(V ) , (7)

where TV is the tangent bundle.
It is important to note that (7) does not require the subvarieties X , Y to be in ‘special position’

with respect to one another. In fact, this formula is especially useful when the varieties meet with
e.g., ‘excess intersection’, that is, when their intersection does not have the expected dimension.
And again note that the formula does not ‘move’ the subvarieties: as stressed in §2.1, this approach
to intersection theory does not rely on a moving lemma.

9



P
o
S
(
M
A
2
0
1
9
)
0
1
2

Intersection theory, characteristic classes, and Feynman rules P. Aluffi and M. Marcolli

Example 2.1. Let V be a nonsingular compact complex algebraic variety. Its topological Euler
characteristic χ(V ) is then given by the ‘self-intersection’ V · V in the product V × V : indeed,
according to (6), this product is given by

V · V = {c(TV ) ∩ s(V,V )}0 = cdimV (TV ) ∩ [V ] ,

and
∫

cdimV (TV ) ∩ [V ] = χ(V ) by the Poincaré-Hopf theorem (we denote by
∫
α the degree of

the zero-dimensional component of a class α).
Thus, we could take V · V as the definition of the topological Euler characteristic of V , and

this would extend this notion to nonsingular varieties over arbitrary fields, including e.g., fields in
positive characteristic. y

The (degree of the) intersection in Example 2.1 is an ‘ordinary’ intersection number, arising
from a situation which is as far from transversal as possible, and computed without deforming the
intersecting varieties within their rational equivalence (or homology) classes. Fulton-MacPherson
intersection theory is very successful at handling such excess intersection situations, which abound
in e.g., classical enumerative problems. For example, the historically significant number 3,264
of conics tangent to 5 nonsingular conics in general position in P2

C
, mentioned in §2.1, may be

obtained using Fulton-MacPherson intersection theory by computing the relevant Segre class to
evaluate directly the contribution of the excess intersection to the Bézout number. This computation
is actually quite straightforward ([1, Example 9.1.9]), and extends the result to arbitrary algebraically
closed fields. For example, the corresponding number over fields of characteristic 2 is 51. A similar
excess intersection technique may also be used to recover (and justify rigorously) Maillard’s result
computing the number 33,616 of cubics tangent to 9 lines in general position in P2

C
. (This was done

in [6]. The number was also verified in [7], by different techniques. The number for quartics was
verified rigorously by Vakil [[8]].)

A natural question at this point is whether the intersection numbers needed in the Mathe-
mAmplitudes applications may be interpreted in terms of Fulton-MacPherson intersection theory.
If questions of excess intersection arise naturally in the context needed for these computations,
formulas such as (7) would yield the most natural approach to the computation of such numbers.

2.6 Some more recent developments

The definitions reviewed in the past several sections date back about 40 years, and yet remain
the state of the art for intersection theory in the context of schemes. The theory has been and
continues to be extremely successful; Fulton’s text [1] counts thousands of citations. It would be
futile to either attempt to review its applications or overview directions in which intersection theory
has developed in algebraic geometry in the past several decades.

Among the issues that may be closer to possible applications to MathemAmplitudes, probably
the intersection theory of moduli spaces stands out; the geometry of moduli spaces of pointed
rational curves appears to be especially relevant to these computations. We will just mention
several themes, with an ‘initial’ reference that the reader may use as a seed for a more thorough
bibliographic search.

In general, intersection theory on moduli spaces requires an extension of the theory beyond
schemes, to stacks. This foundational work was initiated in the ’80s, [9]. In the ’90s, intersection
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numbers on the moduli space of curves were the object of important conjectures by Witten, proven
by Kontsevich, see [10]. A description of the tautological ring ofMg,n is available through Faber’s
conjectures, [11]; these are still partly open, and they have been extended in several directions. The
intersection theory of M 0,n is well understood (and does not requires extensions to stacks) after
work of Keel, [12]. However, subtle questions remain about this space, related to a conjecture of
Fulton’s, [13].

Another fascinating interaction of physics and intersection theory stemmed directly from
enumerative geometry. Physicists Candelas, de la Ossa, Green, and Parkes provided a spectacular
computation of the (expected) number of rational curves of a given degree on a quintic threefold,
by methods that did not use standard intersection theory [14]. This work brought mirror symmetry
to the full attention of mathematician, and was also important in the development of new tools
such as quantum cohomology, based on the study of moduli spaces of stable maps and on Gromov-
Witten invariants, ([15–17]). A key ingredient in the definition of these invariants is the notion
of virtual fundamental class; and one approach to the treatment of this class is through excess
intersection ([18]) by means analogous to (6). These enumerative questions were also one of the
motivations for the development of equivariant methods in intersection theory, particularly leaning
on localization formulas. A full equivariant version of intersection theory was developed in [19].

In the rest of this paper we will focus on a completely different, and much less explored,
interaction between intersection theory and theoretical physics. Among the many unmentioned
developments of intersection theory of the past few decades, there is a theory of characteristic
classes of singular varieties. We will recall the main definitions of an important such class, and
then report on an invariant constructed on the basis of this class for hypersurfaces arising in quantum
field theory, specifically associated with the contribution of (‘Feynman’) graphs to an amplitude
computation.

In a sense this is closer to the theme ofMathemAmplitudes: this work was originally motivated
by the attempt to understand the type of numbers that can be obtained as Feynman amplitudes in
quantum field theory. On the other hand, it is also directly in contrast with the philosophy underlying
MathemAmplitudes, which aims at bypassing the perturbative approach.

Be is as it may, this is another instance of the conceptual interaction between intersection
theory and high energy physics, and we would like to advertise it in the hope that it may stimulate
(even) closer interactions. We should also point out that (Fulton-MacPherson) intersection theory
is part of the standard toolbox in the work of many physicists and mathematical physicists. We will
mention the work of Esole and his collaborators, broadly aimed at the study of elliptic fibrations,
see [20] as one example among many.

3. Characteristic classes of singular/noncompact algebraic varieties

3.1 Chern classes and the Euler characteristic

Let V be a nonsingular compact algebraic variety over C. The tangent bundle of V is a natural
source of important invariants of V , particularly by means of its Chern classes. For example, the
canonical bundle of V is the top exterior power of V , and its Chern class equals −c1(TV ) ∩ [V ],
the canonical divisor of V . This divisor class agrees with the class determined by a meromorphic
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top differential form on V by taking the difference between the divisor of zeros of the form and the
divisor of poles; the vanishing of this class is one of the defining properties of Calabi-Yau varieties.
More generally, the Chern classes ci (TV ) encode an obstruction to the existence of global frames
of dim V − i + 1 vector fields on V , or (dually, and therefore up to sign), linearly independent global
differential forms on V . In particular, the top Chern class cdimV (TV ) quantifies the obstruction
to the existence of a nonvanishing tangent vector field on V . The precise result here was already
recalled in Example 2.1: ∫

cdimV (TV ) ∩ [V ] = χ(V ) (8)

equals the topological Euler characteristic of V , by the Poincaré-Hopf theorem.
The algebro-geometric point of view provides a generalization of these considerations to more

general fields: for example, we can take the left-hand side of (8) as the definition of an ‘Euler
characteristic’ for a nonsingular, complete variety: a tangent bundle is defined in this generality
(for example by reference to the sheaf of differential forms, which is an inherently algebraic object),
and Chern classes are also defined in general as reviewed in §2.4. This general form of the Euler
characteristic has the same pleasant properties of the topological Euler characteristic in the complex,
topological sense: for example, it is multiplicative in the sense that

χ(V ×W ) = χ(V ) χ(W ) ,

and it is additive in the sense that if V , resp., V ′ are complete nonsingular varieties and Z , resp., Z ′

are closed subvarieties, and V r Z � V ′ r Z ′ are isomorphic, then

χ(V ) − χ(Z ) = χ(V ′) − χ(Z ′) .

In fact, this allows us to define a consistent notion of Euler characteristic for possibly singular,
possibly noncomplete varieties: if U = V r Z , where Z is a closed subvariety of a complete
nonsingular variety V , we may set

χ(U) := χ(V ) − χ(Z ) ;

and if W = qiUi is a possibly singular variety, written as the disjoint union of locally closed
nonsingular subvarieties, we may define

χ(W ) :=
∑
i

χ(Ui) .

In the complex case, this more general notion of Euler characteristic still agrees with the topological
(compactly supported) Euler characteristic.

It is natural to ask whether more general invariants of algebraic varieties satisfy these strong
multiplicative and additive properties. We will present two such notions: one directly related to
intersection theory, in this section; and one of a different (but ultimately also related) nature, in §4.1.

3.2 Chern classes of noncompact/singular varieties

For convenience we will now work over C; the material in this subsection has a natural
generalization to arbitrary algebraically closed fields of characteristic zero ([21, 22]).

12
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As we have recalled, the Euler characteristic of a nonsingular compact complex algebraic
variety V equals the degree of the zero-dimensional part of the total Chern class of the tangent
bundle of V ,

c(TV ) ∩ [V ] = (1 + c1(TV ) + · · · + cdimV (TV )) ∩ [V ] ∈ A∗(V ) .

We will call this class the ‘Chern class of V ’ for short. It is natural to ask whether the additivity
properties of the Euler characteristic may be extended to the Chern class of a variety, and in
particular whether this notion of Chern class may be extended to varieties that are not necessarily
nonsingular or compact.

A natural extension would associate a ‘Chern class’ to every constructible (integer-valued)
function ϕ on a variety V . Every constructible function may be written as a finite sum of indicator
functions of closed subvarieties, with integer coefficients:

ϕ =
∑
Z⊆V

mZ11Z ,

where mZ ∈ Z and 11Z (p) = 1 if p ∈ Z , 0 if p < Z . Denoting by C(V ) the abelian group
of constructible integer-valued functions, ‘additivity’ would imply that this extended Chern class
should be a homomorphism of abelian groups

c∗ : C(V ) → A∗(V ) , (9)

subject to the requirement that if i : Z ↪→ V is the inclusion of a closed nonsingular subvariety,
then

c∗(11Z ) = i∗(c(T Z ) ∩ [W ]) ∈ A∗(V ) .

These additivity and normalization requirements alone do not determine a unique homomorphism
c∗. A Chern-class version of the multiplicativity property of the Euler characteristic leads to a
further requirement that does determine a unique homomorphism.

For this, consider the product V ×W of two compact complex algebraic varieties, with projec-
tions πV , πW to the factors. We have

T (V ×W ) = π∗V (TV ) ⊕ π∗W (TW ) ,

and therefore (by the Whitney formula, (1))

c(T (V ×W )) = π∗V c(TV ) π∗W c(TW ) .

Now observe that π∗W (c(TW ) ∩ [W ]) consists of classes of dimension ≥ dim V ; the classes of
dimension > dim V vanish after push-forward to V , while

πV∗(cdimW (TW ) ∩ [W ]) =
(∫

cdimW (TW ) ∩ [W ]
)

[V ] = χ(W ) [V ] .

Therefore the other good functoriality property of Chern classes recalled in §2.4 give

πV∗(c(T (V ×W )) ∩ [V ×W ]) = c(TV ) ∩ πV∗(π∗W (c(TW ) ∩ [W ])
= χ(W ) c(TV ) ∩ [V ] .

(10)
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This tells us what functoriality property we should expect from the sought-for homomor-
phism c∗ in (9). We may view the abelian group C(V ) introduced above as the value of a functor

C : {compact complex varieties} −→ {abelian groups} ;

if f : V → W is a proper morphism, we let

f∗ : C(V ) → C(W )

be the homomorphism determined by letting for all closed subvarieties Z of V and points p ∈ W

f∗(11Z )(p) = χ( f −1(p) ∩ [Z]) ,

and extending this prescription to all constructible functions by linearity. It can be shown that the
right-hand side in this expression is a constructible function, and that ( f ◦ g)∗ = f∗ ◦ g∗. (This is
ultimately because of the additivity and multiplicativity properties of the Euler characteristic.) For
example,

πV∗(11V×W ) = χ(W ) 11V ,

in accord with the Chern class identity (10). With this notation, we can state the following key
result.

Theorem 3.1. There exists a unique natural transformation c∗ : C → A∗ such that if V is a
nonsingular variety, then

c∗(11V ) = c(TV ) ∩ [V ] .

This statement was conjectured in homology by Grothendieck and Deligne, and proved by
MacPherson ([23]). The extension to the Chow group may be found in [1, Example 19.1.7].

We can use the natural transformation provided by Theorem 3.1 to give the following definition.
For a compact variety V , and every locally closed U, we can set

cSM(U) := c∗(11U ) ∈ A∗V .

The normalization requirement specified in Theorem 3.1 implies that if U = Z
i
↪→ V is a nonsingu-

lar, compact subvariety of V , then

cSM(Z ) = i∗ (c(T Z ) ∩ [Z])

as expected. In this sense, cSM(U) is an extension to possibly singular, possibly noncompact
varieties of the notion of total Chern class of the tangent bundle. It shares additive andmultiplicative
properties with the Euler characteristic. For example, let U1, U2 be two locally closed subsets of V .
Since

11U1∪U2 = 11U1 + 11U2 − 11U1∩U2 ,

we must have
cSM(U1 ∪U2) = cSM(U1) + cSM(U2) − cSM(U1 ∩U2) , (11)

an ‘inclusion-exclusion’ formula that is often useful in concrete computations.
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Remark 3.1. As we will observe below, the degree of cSM(U) equals its topological Euler charac-
teristic χ(U). More generally, all the terms in cSM(U) may be interpreted as obstructions to the
existence of ‘global frames of tangent vector fields’, similar to the interpretation of the components
of ci (TV ) in the nonsingular case, recalled in §3.1. If U is singular, one needs to define a suitable
notion extending ‘tangent vector fields’. This may be done by considering vector fields that have
suitably controlled (‘radial’) behavior near the singularities. This fundamental insight actually
preceded MacPherson’s work and the formulation of the Grothendieck-Deligne conjecture: as early
as 1965 ([24, 25]), Marie-Hélène Schwartz had introduced radial frames and extended this general
form of the Poincaré-Hopf theorem, producing Chern classes for singular varieties, in relative
cohomology. Brasselet and Schwartz later proved that the Schwartz classes and the MacPherson
classes agree under Alexander duality ([26, 27]). The notation cSM is chosen as an acronym for
‘Chern-Schwartz-MacPherson’. y

As an example of the benefit of the functoriality property of cSM classes, consider the constant
map κ : V → pt of a compact variety V to a point. The fact that c∗ is a natural transformation
implies that the following diagram is commutative:

C(V )

κ∗

��

c∗ // A∗(V )

κ∗

��
C(pt) Z A∗(pt)

Chasing this diagram with the constructible function 11U for any locally closed subset U ⊆ V :

11U_

κ∗

��

� // cSM(U)_

κ∗
��

χ(U)
∫

cSM(U)

proves that ∫
cSM(U) = χ(U) . (12)

Thus, the topological Euler characteristic ofU equals the degree of its Chern-Schwartz-MacPherson
class. This should be viewed as an extension to possibly singular, possibly noncompact varieties, of
the Poincaré-Hopf theorem. The existence of a natural transformation c∗ as stated in Theorem 3.1
recovers this fundamental classical theorem as the extremely special case of constant maps on
nonsingular compact varieties.

For V = Pn, the CSM class of a locally closed subset U is an element of A∗Pn, that is, an
integer linear combination of the classes [P0], . . . , [Pn] of linear subspaces of Pn:

cSM(U) =
n∑
i=0

ai[Pi] .

The information carried by the class in this case consists of n + 1 integers, and the foregoing
considerations imply that a0 = χ(U) is the topological Euler characteristic of U. It can be shown
that the integers a0, . . . , an in fact determine and are determined by the Euler characteristics of the
intersections of U with general linear subspaces of all dimensions in Pn ([28]).
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3.3 Effective computations and generalizations

The definition of c∗ given by MacPherson in [23] relies on an important alternative generaliza-
tion to singular varieties of the total Chern class, called theWu-Mather Chern class, and on a subtle
numerical invariant of singularities, the local Euler obstruction. In principle, the Chern class c∗(ϕ)
associated with a constructible function may be computed by using these ingredients.

In practice, however, the functoriality property of cSM classes yields a more efficient tool for
their computation. As a consequence of resolution of singularities (which holds in characteristic 0),
for any constructible function ϕ ∈ C(V ) there exists a finite collection of nonsingular varieties Zi

and maps f i : Zi → V such that
ϕ =

∑
i

mi f i∗(11Zi )

for suitable integers mi. Functoriality and the normalization property stated in Theorem 3.1 imply
then that

c∗(ϕ) =
∑
i

mi f i∗(c(T Zi) ∩ [Zi]) .

In practice, this method can be refined further. Let’s focus on the class cSM(V ) = c∗(11V ),
where V is compact but possibly singular. Decompose V as a disjoint union of a collection of
locally closed nonsingular subvarieties Ui:

V = qiUi .

By additivity,
cSM(V ) =

∑
i

cSM(Ui) :

thus, the computation of the CSM class of a variety V is reduced to the computation of the
contribution cSM(U) ∈ A∗(V ) of nonsingular locally closed subsets U. For this, consider the
closure U of U in V . Again by resolution of singularities, there exists a nonsingular complete
variety Ũ along with a proper map u : Ũ → U , that is an isomorphism over U, and such that the
complement Ũ −U is a divisor D with normal crossings and nonsingular components Di.

U �
� // Ũ

u
��

U �
� // U �

� ι // V

The following result computes directly the image of cSM(U) in A∗(V ).

Proposition 3.2.

cSM(U) = i∗u∗ *
,

c(TŨ)∏
i (1 + Di)

∩ [Ũ]+
-

(13)

This is proved in [22], where it is also shown that this definition may be used to extend
Theorem 3.1 to arbitrary algebraically closed field of characteristic 0. The way the expression in
the formula should be interpreted is as follows. As we discussed in §2.4, 1 + Di = c(O(Di)) is
an operator on the Chow group A∗V ; the intersection product by Di is nilpotent, since Dk

i = 0 for
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k > dim V ; and then 1 + Di is invertible, and the notation in the ‘denominator’ in (13) records the
action by its inverse.

Other formulas computing CSM classes bypass the use of resolution of singularities. If X is a
hypersurface in a nonsingular variety V , then

cSM(X ) = c(TV )c(O(X ))−1 ∩
(
[X] +

(
s(JX,V )∨ ⊗V O(X )

))
. (14)

This is proved in [29]. Here JX is the subscheme of X defined locally by the partial derivatives
of a local equation of X ; thus, it is a scheme supported on the singular locus of X . The term
s(JX,V ) denotes the Segre class introduced in §2.4; other notation used in this statement is
explained in loc. cit. A somewhat more involved statement generalizes (14) to arbitrary subschemes
of nonsingular varieties, [30].

MacPherson’s natural transformation and CSM classes have been generalized in several di-
rections. Ohmoto obtained an equivariant version of the theory ([31]). The equivariant setting
may be used to provide formulas for CSM classes based on localization techniques ([32]), thereby
also bypassing resolution of singularities. Brasselet, Schürmann, and Yokura have introduced and
studied powerful ‘motivic’ and associated ‘Hirzebruch’ classes for possibly singular varieties, de-
pending on a parameter ([33]). For different values of the parameter, these classes may be used to
recover the CSM class and other important characteristic classes (particularly the Todd class and
the L class). One important feature of this approach is the role played by the Grothendieck group
of algebraic varieties. In some sense this works as a replacement for the functor of constructible
functions considered above. We will review the definition of this object in the next section, but will
not expand on its role in the theory introduced in [33].

CSM classes (as well as the more recent generalizations mentioned in the previous paragraph)
have been computed for many classical varieties; among others we mention Schubert varieties
in flag manifolds, a topic that has received recent attention and revealed deep connections with
e.g., the theory of stable envelopes of Maulik and Okounkov ([34], [35], and several others). The
reader is warned that many important aspects of the theory, such as the role of characteristic
cycles or D-modules, are entirely omitted in the short summary sketched above. Our goal has
simply been to alert the reader of the existence of these important invariants, of their ‘geometric’
interpretation, and of the fact that there are effective intersection-theoretic techniques to compute
them if suitable information is available. In the section that follows we will use these classes to
define invariants associated with graphs, motivated by the role of certain related hypersurfaces in
perturbative expansions of Feynman amplitudes and by considerations stemming from computations
in the Grothendieck ring of varieties.

4. ‘Feynman motives’ and cSM classes of graph hypersurfaces

4.1 The Grothendieck ring of varieties

In §3.2 we have presented one substantial generalization of the Euler characteristic, with
values in a Chow group. There is a different generalization, which extends the good additivity
and multiplicativity properties of the Euler characteristic in an essentially tautological fashion, and
which has revealed to be very useful.
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Consider the free abelian group I (Vark ) on isomorphism classes of varieties over a field k (or
more generally over Z; or over a fixed scheme). We simply impose relations capturing additivity in
the simplest, most general way:

K (Vark ) := I (Vark )/〈[V ] − [Z] − [U]〉 :

here V ranges over all k-varieties, Z ⊆ V is a closed subvariety, and U = V r Z is the complement
in V ; 〈[V ]− [Z]− [U]〉 is the subgroup generated by all these elements. We can give a ring structure
to the group K (Vark ) by declaring that [V ] · [W ] = [V ×W ] for all varieties V and W , and extending
this definition by linearity; the identity element 1 is the class of a point. The resulting ring is the
‘Grothendieck ring of k-varieties’.

Example 4.1. Denote by L the class [A1] of the affine line in the ring K (Vark ); this is called the
‘Lefschetz-Tate motive’. Then

[Pnk ] = Ln + Ln−1 + · · · + 1 =
Ln+1 − 1
L − 1

∈ K (Vark ) : (15)

indeed, we can write Pn
k
as a disjoint union of affine spaces:

Pnk = A
n q An−1 q · · · q A0

so that (15) follows from additivity in K (Vark ). (Note that [Ak] = [A1 × · · · × A1︸           ︷︷           ︸
k times

] = Lk .) The right-

hand side of (15) also records the fact that kn+1 r {0} = An+1 rA0 maps to Pn as a Zariski-locally
trivial fibration with fibers k∗ = A1 r A0. y

Tautologically, every ring-valued invariant of algebraic k-varieties which is preserved by
isomorphisms, satisfies additivity over disjoint unions, and multiplicativity over products, must
factor through K (Vark ). Thus, the association of a variety V with its class [V ] in the Grothendieck
ring K (Vark ) is a universal such invariant; it is viewed as a ‘universal Euler characteristic’, as the
topological Euler characteristic is the simplest example of such an invariant, for k = C. Among
other invariants that must factor through K (Vark ) we mention the number of points of V if k is a
finite field, and the class in the Grothendieck group of pure Chow motives. Because of this latter
connection, the class [V ] in K (Vark ) may be viewed as a simplified analogue of the motive of
V , and is also known as the ‘naive motive’ of V . The Grothendieck ring K (Vark ), or rather a
completed localized version of K (Vark ), is the ring of values of the sophisticated theory of motivic
integration of Denef and Loeser; see [36] for an excellent survey. Also see [37] for a useful
alternative presentation of the Grothendieck ring of varieties.

The Chern-Schwartz-MacPherson class satisfies additivity and multiplicativity properties, but
does not factor through the Grothendieck group: indeed, it takes values in the Chow group of
the variety, so its target is not a fixed group or ring. Nevertheless, there are clear similarities
linking the two theories. The theory ofmotivic Chern classes of Brasselet, Schürmann, and Yokura
defines a natural transformation from a relative version of the Grothendieck group of varieties over a
given variety V to the Grothendieck group of coherent sheaves of OV -modules, adjoined with a free
variable y. Asmentioned in §3.3, this theory generalizes the theory of Chern-Schwartz-MacPherson
classes summarized in §3.2; in this context, the relative Grothendieck group plays the role of the
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group of constructible functions. In a different direction, there is an analogue to motivic integration
with values in the Chow group, which may be used to recover Chern-Schwartz-MacPherson classes,
see [38].

We will not review these developments here, rather highlight the simpler observation that often
the work needed to perform concrete computations in K (Vark ) will also yield results at the level
of CSM classes. This is the case for the graph hypersurfaces arising in the interpretation of the
contribution of a given graph to a Feynman amplitude (in perturbative massless scalar field theories)
as a ‘period’. We will discuss this context next, and conclude the paper with a description of an
invariant defined in terms of characteristic classes of graph hypersurfaces, mimicking the invariant
of these objects defined below in terms of naive motives.

4.2 Feynman integrals and graph hypersurfaces

Let G be a (undirected) graph with n > 0 edges. The (Kirchhoff-Tutte-Symanzik) ‘graph
polynomial’ of G is the polynomial

ΨG (t1, . . . , tn) :=
∑
T

∏
e<T

te

where T ranges over the maximal spanning forests of G, i.e., the unions of spanning trees or the
connected components of G, and te is a variable associated with edge e.
Example 4.2. The graph polynomial of the ‘banana graph’ with 3 edges,

2
t3

t1t

is
ΨG (t) = t2t3 + t1t3 + t1t2 . (16)

Indeed, this graph has three spanning trees, each consisting of a single edge. y

It follows immediately from the definition that ΨG (t) is homogeneous, of degree equal to the
number of loops in G. The vanishing of ΨG (t) defines the ‘graph hypersurface’ of G. This may
be viewed in Pn−1 or as a cone in An, where n is the number of edges of G. The second option is
preferable. In fact, the most natural object of study is the complement Y̌G := An r X̌G of the affine
graph hypersurface X̌G corresponding to G, defined by ΨG (t) = 0 in the ambient affine space An.

These graph hypersurface complements Y̌G = Anr X̌G arise naturally in perturbative quantum
field theory, when one writes the Feynman integrals for a massless scalar field theory in terms of
Feynman parameters.

The physical Feynman rules for a scalar quantum field theory express the Feynman integral for
a Feynman graph G of the theory in the form

U (G) =
∫

δ(
∑

e∈Eint (G) εe,vke +
∑

e′∈Eext (G) εe′,vpe′)
q1(k1) · · · qn(kn)

dDk1 · · · dDkn ,

where the constraint in the delta function is the momentum conservation relation at vertices∑
e∈Eint (G)

εe,vke +
∑

e′∈Eext (G)

εe′,vpe′ = 0
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with external momenta pe′, with the propagators associated to edges given by the quadrics qe (ke) =
k2
e + m2, with k2

e :=
∑D

i=1 k2
e,i with D the spacetime dimension. The matrix εe,v is the incidence

matrix of the graph G.
The “Feynman trick" or Feynman parameters representation of the Feynman integral above

refers to the use of the identity

1
q1 · · · qn

= (n − 1)!
∫

[0,1]n

δ(1 −
∑

i ti)
(t1q1 + · · · + tnqn)n

dt1 · · · dtn

to replace the product of quadratic forms in the denominator with a linear combination of quadratic
forms and an integration of the coefficients te (the Feynman parameters) over a simplex σn =

{t |
∑

i ti = 1}.
One then considers a change of variables ke = ue +

∑`
j=1 ηe, j x j , with ηe, j the circuit matrix of

the graph G and ` = b1(G) the loop number, with constraint
∑

e teueηe, j = 0, for all j = 1, . . . , `.
The ue are taken, as a function of the external momenta, to be a solution to the equation∑

e∈Eint

εe,vue +
∑

e′∈Eext

εe′,vpe′

that follows from momentum conservation at vertices and the orthogonality∑
e

εe,vηe, j = 0,

for all j = 1, . . . , ` of incidence and circuit matrices. One can then take care of the integration in
the xi variables in the resulting Feynman integral via the identity∫

dD x1 · · · dD x`
(
∑

i tiqi)n
= C`,n det(MG (t))−D/2(

∑
i

ti (u2
i + m2))−n+D`/2,

where C`,n is a factor independent of G (for fixed number of loops and internal edges) and equal to

C`,n =
∫

dD x1 · · · dD xn
(1 +

∑
k x2

k
)n

,

while MG (t) is the matrix MG (t)kr =
∑

i tiηikηir , whose determinant is given by the graph
polynomial, det(MG (t)) = ΨG (t). One can also show that, in the massless case m = 0, the term∑

i tiu2
i can also be written as a polynomial PG (t, p), homogeneous of degree b1(G) + 1 in t. The

graph polynomial ΨG (t) is also known as the first Symanzik polynomial and PG (t, p) as the second
Symanzik polynomial of the graphG. Up to a numerical factor includingC`,n and powers of 2π, and
up to a divergence captured by a Gamma factor Γ(n − D`/2), the parametric form of the Feynman
integral U (G) is then given by

U (G) =
∫
σn

PG (t, p)−n+D`/2

ΨG (t)−n+D(`+1)/2 ωn,

with ωn the volume form on the simplex σn induced by dt1 · · · dtn. We focus here on the range
where D` ≥ 2n so that the integrand is a rational function with the first Symanzik polynomial in
the denominator. Modulo the important issue of infrared divergences caused by the intersections of
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the domain of integration σn and the hypersurface defined by the vanishing ΨG (t) = 0, which need
to be dealt with through an appropriate renormalization procedure that we will not be discussing
here, the parametric Feynman integral looks formally like a period of an algebraic differential form
defined on the graph hypersurface complement Y̌G = An r X̌G . Thus, knowledge of the motivic
properties of these graph hypersurface complements can predict the nature of the numbers that can
occur as periods.

Extensive computational results of Broadhurst and Kreimer [39] found the systematic occur-
rence of multiple zeta values in such computations of Feynman integrals. Multiple zeta values can
be realized as periods of ‘mixed-Tate motives’ [40] and in fact all periods of mixed-Tate motives
are Q[(2πi)−1]-linear combinations of multiple zeta values, [41]. The occurrence of multiple zeta
values in Feynman integral computations originally motivated the conjecture that the varieties Y̌G
would all be mixed-Tate motives. This was originally formulated by Kontsevich as a question on
the polynomial summability of the graph hypersurfaces XG , which can be also formulated as the
question of whether the classes [XG] in the Grothendieck ring of varieties belong to the subring Z[L]
generated by the Lefschetz motive L = [A1]. This conjecture was disproved by Belkale and Brosnan
[42] who showed that the classes [XG] additively generate the localization of the Grothendieck ring
obtained by inverting the classes [GLn] for all n. This means that one expects to see arbitrarily
complicated motives occurring when arbitrarily large graphs are considered. Specific counterexam-
ples of non-mixed-Tate graph hypersurfaces, for the ϕ4-scalar quantum field theory and for graphs
starting at 14 edges, were found by Doryn [43] and by Schnetz [44]. It remains an interesting
question to understand which motives occur and which families of graphs give rise to mixed-Tate
motives.

Some related constructions of algebraic varieties associated to parametric Feynman integrals
are worth mentioning. The first is a variant on the graph hypersurface X̌G , which however is always
a mixed-Tate motive for all graphs G. It is obtained in the following way. In the derivation of the
parametric Feynman integral recalled above, instead of fixing the choice of the ue as a solution to
the momentum conservation equation and

∑
e teueηe, j = 0, we can consider the ue as ranging over

all possible solutions. These are all of the form

ue =
∑̀
r=1

ηe,r βr,

where the orthogonality constraint above becomes

0 =
∑
e,r

teηe,rηe, j βr = Qt (β).

This determines a complete intersection variety

ΛG = {(t, β) |Qt (β) = 0},

with (Qt (β))j =
∑

e,r teηe,rηe, j βr . One obtains in this way a formulation of the Feynman integral
where the relevant variety replacing the graph hypersurface complement X̌G is the variety ΛG

defined above, see [45]. In terms of motivic properties, the varietiesΛG were introduced by Esnault
and Bloch in relation to Hodge structures and shown to be always mixed-Tate, [46].

21



P
o
S
(
M
A
2
0
1
9
)
0
1
2

Intersection theory, characteristic classes, and Feynman rules P. Aluffi and M. Marcolli

Another related construction, also due to Bloch [47], shows that, while the graph hypersurfaces
XG themselves are not always mixed-Tate, if one considers a suitable combination of the classes
[XG], obtained by summing over all graphs with fixed number of vertices, with each class [XG]
weighted by a combinatorial symmetry factor n!/|Aut(G) |, then the resulting Grothendieck class is
always mixed-Tate. This observation is consistent with the fact that, in physics, it is not the contri-
bution of individual Feynman integrals that has physical meaning, but the combined contribution,
appropriately weighted by symmetry factors, of all graphs at a given order (usually loop number or
number of internal edges) in the perturbative expansion.

We also should mention another important algebro-geometric construction in perturbative
quantum field theory related to the parametric form of Feynman integrals. There are linear relations
satisfied by Feynman integrals, which significantly reduce the combinatorial complexity of the
perturbative expansion. The coefficients of these linear relations are rational functions of the
spacetime dimension D, the mass parameters and the external momenta, [48]. This makes it
possible to reduce, through an integration by parts method, the computation of Feynman integrals
to a finite set of master integrals. It is shown in [49] that the number of master integrals can be
computed as a vector space dimension, which in turn is computed by the Euler characteristic of
a hypersurface complement. As in the previous discussion of parametric Feynman integrals, one
writes the combination

∑
e teqe in the loop momentum variables xi (i = 1, . . . , `) as a quadratic, a

linear, and a constant term ∑
e

teqe =
∑
i, j

Mi j xix j +
∑
i

2Qixi + J,

and set G = U + F withU = det M and F = U (Qt M−1Q + J), where

U (`+1)D/2−|ν |F |ν |−`D/2

recovers the same integrand of the parametric Feynman integral described above, where U and
F occur as the first and second Symanzik polynomials, in the slightly more general form where
we have exponents νi of the denominators qi and we use the more general version of the Feynman
parameters formula given by

1
qν1

1 · · · q
νn
n

=
Γ( |ν |)

Γ(ν1) · · · Γ(νn)

∫
[0,1]n

δ(1 −
∑

i ti)
(t1q1 + · · · + tnqn)n

tν1−1
1 · · · tνn−1

n dt1 · · · dtn,

with |ν | = ν1 + · · ·+ νn, so that the parametric Feynman integral is written, up to a numerical factor
and Gamma functions, in the form

U (G) =
∫
σn

ωn

U (`+1)D/2−|ν |F |ν |−`D/2
.

This can be equivalently reformulated in the Lee–Pomeransky form, where, with numerical and
Gamma factors included

U (G) =
Γ(D/2)

Γ((` + 1)D/2 − |ν |)
*
,

∏
i

∫
R

xνi−1
i dxi
Γ(νi)

+
-
G−D/2.
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This formulation of the parametric Feynman integrals is a multidimensional Mellin transform of
the function G−D/2. If one considers only those relations between Feynman integrals that do not
involve different graphs, so that one can work with a fixed G and the corresponding G = GG , then
those relations that change the exponents νi by integer shifts can be identified, via Mellin transform,
with differential operators that annihilate G−D/2. These can be treated using results from the theory
of D-modules. Consider the algebraic torus Gn

m and the hypersurface V (G) = {t = (te) | G(t) = 0}
inside the torus, V (G) ⊂ Gn

m, with

O(Gn
m r V (G)) = C[t±1

e ,G
−1].

The space of all master integrals, seen asMellin transforms of Gs, can be identified with theC(s, ν)-
vector space VG spanned by the integrals with parameters νi shifted by an integer n. The number of
master integrals is the dimension dimC(s,ν) VG . Using a result of Loeser and Sabbah, [50], [51], this
dimension can be computed (see Section 3 of [49]) as the Euler characteristic of the algebraic de
Rham complex of a holonomic D-module, which is then identified with the Euler characteristic of
the algebraic de Rham complex of C[t±1

e ,G
−1], hence the Euler characteristic of the hypersurface

complementGn
mrV (G). It seems an interesting question what additional information on the space

of master integrals can be derived from the additional information, beyond the Euler characteristic,
given by the CSM characteristic classes of the hypersurface V (G) and its complement Gn

mrV (G).

4.3 Algebro-geometric Feynman rules: motivic Feynman rules

The ‘Feynman rules’ are a formalism that extracts from a given graph the corresponding
contribution to the Feynman amplitude. The rules themselves satisfy an interesting general structure.
For example, if 〈G〉 denotes the contribution of G to an amplitude, then it can be shown that

∑
graphs G

〈G〉 = exp *.
,

∑
connected graphs G

〈G〉+/
-

;

this equality encodes a crucial contribution of symmetries in evaluating 〈G〉 in terms of the product
of the contributions of its connected components. In particular, we could restrict our attention to
connected graphs. Further, if G is obtained as the join of two subgraphs G1, G2 by a single edge,
then

〈G〉 = ‘propagator’ ·〈G1〉 · 〈G2〉 ,

including a multiplicative factor (the ‘(inverse) propagator’) that is independent of the graphs.
Some of this structure is mirrored by the graph polynomial itself. For example, it is easy to see

that if G is the disjoint union of two graphs G1 and G2 (including the possibility that G1 and G2

may be connected at a vertex), then ΨG = ΨG1 ·ΨG2 . We say that a ring-valued invariantU (G) of a
graph is an ‘abstract Feynman rule’ if U (G) = U (G1)U (G2) when G is obtained by joining G1 and
G2 at a vertex. In particular, if G1 and G2 are joined by an edge e, thenU (G) = U (e)U (G1)U (G2):
thus, the invariant for a single edge behaves as an ‘propagator’ for these rules.

The reason why the very simple multiplicative property over disjoint union of graphs is referred
to as an “abstract Feynman rule" lies in the fact that this is the minimal algebraic requirement needed
to set up an “algebraic renormalization procedure". This requires the additional property that the
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target commutative ring R is a Rota–Baxter algebra of weight −1, while the source polynomial
algebra on the Feynman graphs (with product given by the disjoint union) is also endowed with a
coproduct making it into a Hopf algebra H . A Rota–Baxter algebra (ring) of weight λ is a unital
commutative algebra (ring) R endowed with a linear operator T : R → R which satisfies the
λ-Rota–Baxter identity

T (a)T (b) = T (aT (b)) + T (T (a)b) + λT (ab).

Note here an important point: the morphism φ : H → R that we are referring to as an
abstract Feynman rule is only a morphism of commutative algebras, and knows nothing about the
coproduct of H and the Rota-Baxter operator of R. However, the multiplicativity of φ, together
with the coproduct of H and the Rota-Baxter operator of R determine a unique multiplicative
splitting (Birkhoff factorization) of φ into two algebra homomorphisms with respective targets
given by subalgebras of R corresponding, respectively, to renormalized values and counterterms in
the physical case. Indeed, the Rota–Baxter operator T determines a decomposition of R into two
commutative algebras (rings), R+ = (1 − T )R and R− the unitization of T R. The convolution
product ? of morphisms φ1, φ2 ∈ HomAlg (H ,R) dual of the coproduct ∆ ofH is given by

φ1 ? φ2(x) = 〈φ1 ⊗ φ2,∆(x)〉 =
∑

φ1(x (1))φ2(x (2)),

for∆(x) =
∑

x (1)⊗x (2) = x⊗1+1⊗x+
∑

x ′⊗x ′′. SinceH is a graded connected commutativeHopf
algebra, the antipode is defined inductively by S(x) = −x −

∑
S(x ′)x ′′. The Birkhoff factorization

of an algebraic Feynman rule φ ∈ HomAlg (H ,R) is defined inductively through the explicit formula

φ−(x) = −T (φ(x) +
∑

φ−(x ′)φ(x ′′))

φ+(x) = (1 − T )(φ(x) +
∑

φ−(x ′)φ(x ′′)).

The Rota-Baxter identity for T ensures that these maps φ± ∈ HomAlg (H ,R±) are indeed algebra
homomorphisms.

The case where R is an algebra of Laurent power series, with projection onto the polar part as
Rota-Baxter operator, corresponds to the physical case where the resulting renormalization proce-
dure (theConnes–Kreimer renormalization) recovers the physical BPHZ renormalization procedure.
The same structure however is implementable for other types of Rota-Baxter structure, hence we
use in this setting the broader term “abstract Feynman rules" and “algebraic renormalization". We
will not review here the detailed properties of Rota–Baxter algebras and Birkhoff factorization,
as we will not need them in the rest of the paper, but we refer the readers to [52], [53], [54]
for a detailed discussion of Connes–Kreimer renormalization. For examples of this formalism of
algebraic renormalization applied outside of the quantum field theory BPHZ renormalization, with
other Rota-Baxter structures, see for instance [55], [56].

As a broad class of examples of abstract Feynman rules, we can take the ‘Tutte-Grothendieck
invariants’ of graphs, that is, specializations of the Tutte polynomial. Many important invariants of
graphs (e.g., the chromatic and flow polynomials, the partition function of the Ising model, etc.) are
invariants of this type. We note that Tutte-Grothendieck invariants satisfy, essentially by definition,
simple formulas with respect to the operations of deletion Gr e and contraction G/e of an edge e of
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a graph G. As a consequence, they also satisfy ‘multiple edge formulas’, which can be assembled
into a generating function: if TG (x, y) denotes the Tutte polynomial of a graph G, and we denote
by Gme the graph obtained by replacing an edge e by m parallel edges, then∑

m≥0
TGme (x, y) ·

sm

m!
= es

(
TGre (x, y) +

e(y−1)s − 1
y − 1

TG/e (x, y)
)

(17)

provided that e is not a bridge or a looping edge in G. While this tighter structure is not satisfied by
arbitrary abstract Feynman rules, we will see that glimpse of it are satisfied by the rules that arise
naturally in the context of graph hypersurfaces.

For us ([57, 58]), an ‘algebro-geometric Feynman rule’ is an abstract Feynman rule which only
depends on the complement Y̌G := An r X̌G . The dependence of an algebro-geometric Feynman
rule on Y̌G does not a priori depend only on the isomorphism class of Y̌G . For example, it may depend
also on the specific data of immersed algebraic varieties, for which a suitable form of Grothendieck
ring of immersed conical varieties can be defined, see [57]. We say that an algebro-geometric
Feynman rule is ‘motivic’ if it only depends on the class U(G) := [Y̌G] in the Grothendieck ring
K (Vark ). In fact, the class U(G) is itself an algebro-geometric Feynman rule, with propagator
given by the Lefschetz-Tate motive L. Indeed, it is essentially straightforward to verify that if
G = G1 q G2, then Y̌G � Y̌G1 × Y̌G2 : therefore, U(G1 q G2) = U(G1)U(G2); and if G = e consists
of a single edge, then ΨG = 1, so that

U(e) = [A1 r ∅] = [A1] = L .

Example 4.3. For the ‘3-banana’ G of Example 4.2,

U(G) = L2(L − 1)

as may be checked easily: the complement Y̌G of the affine graph hypersurface maps to the
complement of a smooth conic in P2, with k∗ fibers; smooth conics are isomorphic to P1, and the
result follows. y

Thismotivic Feynman rule is not aTutte-Grothendieck invariant. This fact reflects the important
observation, due to Belkale and Brosnan and already discussed in §4.2, that in general graph
hypersurfaces do not determine mixed-Tate motives, that is, polynomials in the class L. If recursive
formulas under deletion and contraction held for the motivic Feynman rule, it would follow that the
class of every graph hypersurface is in Z[L].

It is natural then to inquire to what extent a given algebro-geometric Feynman rule may satisfy
deletion-contraction or multiple-edge formulas: for motivic Feynman rules, this may be viewed
as a way to quantify the extent to which graph hypersurfaces fail to be mixed-Tate motives, and
the recursive process underlying multiple-edge formulas may be used to provide families of graphs
whose hypersurface do determine mixed-Tate motives. For instance, for certain SYK quantum field
theories that are dominated by the melonic sector, one sees by a careful use of these recursive
procedures that the dominant contributions to the asymptotic expansion remain in the mixed-Tate
class, see [59].

The behavior of the motivic Feynman rule with respect to these operations amounts to the
following statement.
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Theorem 4.1 ([58]). Let U(G) := [Y̌G] ∈ K (Vark ). Assume the edge e of G is neither a bridge nor
a looping edge. Then

U(G) = L · [Y̌Gre ∪ Y̌G/e] − U(G r e) .

Further, let Gme be the graph obtained by replacing e with m parallel edges. Then

U(G2e) = (L − 2) · U(G) + (L − 1) · U(G r e) + L · U(G/e) ; (18)

and∑
m≥0
U(Gme)

sm

m!
=

e(L−1)s − e−s

L
U(G) +

e(L−1)s + (L − 1)e−s

L
U(G r e)

+

(
se(L−1)s −

e(L−1)s − e−s

L

)
U(G/e) .

The first formula is the analogue for motivic Feynman rules of a deletion-contraction formula.
Note that it includes a term, [Y̌Gre∪Y̌G/e], which does not only depend on combinatorial information,
in the sense that it is not the Grothendieck class of a graph hypersurface complement. In a sense,
this term is responsible for the fact that graph hypersurfaces are not necessarily mixed-Tate, as it
prevents a straightforward recursive determination of the class U(G). It is quite interesting that
the second and third formulas are combinatorial, thus close in spirit with the situation for Tutte
invariants. Compare the third formula with the corresponding formula (17) that holds for Tutte
polynomials. The coefficients appearing in this expression are independently significant, as they
are related to functions used in defining Hirzebruch’s Ty genus.

Example 4.4. The ‘n-banana graph’

n

may be viewed as Gme for m = n − 2, where G is the 3-banana graph. We found U(G) = L2(L− 1)
(Example 4.3), and it is easy to verify that

U(G r e) = L(L − 1) , U(G/e) = (L − 1)2 .

By Theorem 4.1, a generating function for the class U(Gn) is∑
n≥2
U(Gn)

sn−2

(n − 2)!
= (L − 1)

(
(L2s − Ls + L2 + 1)

e(L−1)s − e−s

L
+ (Ls + L − s)e−s

)
One may observe that this expression equals

d
ds2

(
(L − 1)

e(L−1)s − e−s

L
+ se(L−1)s

)
and it follows that

U(Gn) = (L − 1)
(L − 1)n − (−1)n

L
+ n(L − 1)n−1 (19)

for n ≥ 2. y
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4.4 Chern-Schwartz-MacPherson Feynman rules

Recall that the Grothendieck ring of varieties acts as a ‘universal Euler characteristic’. Thus, the
formulas obtained in Theorem 4.1 hold for every additive and multiplicative ring-valued invariants
of complements of affine graph hypersurfaces.

The Euler characteristic is such an invariant, but it is not useful in this case (as it equals 0
if the graph is not a forest); it is natural to inquire whether the other generalization of the Euler
characteristic that we have examined in §3.2, that is, the Chern-Schwartz-MacPherson class, may
also be used to define abstract Feynman rules. The result of this last section in this paper is that
this is indeed the case. Thus, the intersection theory (in the sense of §2) used in our treatment
of characteristic classes for singular/noncompact varieties provides an alternative way of encoding
some of the basic structure underlying amplitudes in perturbative quantum field theory.

The resulting graph-theoretic invariant is not motivic, that is, it is not a specialization of the
motivic Feynman rules introduced above, and also is not a Tutte-Grothendieck invariant. In fact,
its behavior with respect to deletion and contraction is very subtle, and we will close this paper by
describing multiple-edge formulas that it satisfies.
Remark 4.1. The Euler characteristic of the complement YG of the projective graph hypersurface
XG carries more information than its affine counterpart; see below. Contrary to an early guess of the
first author, the Euler characteristic χ(YG) can take any integer value, as has been proved recently
([60]). y

In order to define the ‘Chern-Schartz-MacPherson’ Feynman rules, recall that in §3.2 we have
defined a class cSM(U) ∈ A∗(V ) for every locally closed subset U of a variety V . For a graph G
with n edges we let V = Pn, so that elements of the Chow group A∗(V ) may be written as a linear
combination

a0[P0] + a1[P1] + · · · + an[Pn]

with integer coefficients ai. We say that a locally closed subset U ⊆ An is ‘conical’ if u ∈ U if and
only if λu ∈ U for all λ ∈ k∗. With every locally closed conical subset U ⊆ An we associate the
polynomial

FU (t) := a0 + a1T + · · · + anTn

determined by the coefficients ai in the class

cSM(U) = a0[P0] + a1[P1] + · · · + an[Pn] ,

where we view U as a locally closed subset of the projective space Pn obtained by completing An.
Example 4.5. An affine subspace Ak through the origin in An is conical. Its completion in Pn is a
subspace Pk . By additivity, and denoting by H the hyperplane class,

cSM(Ak ) = cSM(Pk ) − cSM(Pk−1)

= c(TPk ) ∩ [Pk] − cSM(TPk−1) ∩ [Pk−1]
= ((1 + H)k+1 · Hn−k − (1 + H)k · Hn−k+1) ∩ [Pn]
= (1 + H)k · Hn−k ∩ [Pn]

=

k∑
i=0

(
k
i

)
[Pi] ,
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therefore

FAk (T ) =
k∑
i=0

(
k
i

)
T i = (1 + T )k .

Note that the result is independent of the ambient dimension n. y

It is in fact easy to see that if U ⊆ An, and An is viewed as a subspace of Am for some m ≥ n,
then FU (t) may be computed by using either embedding.

The following lemma is key for the considerations that follow.

Lemma 4.2. The invariant FU (T ) is additive, in the sense that if U ′, U ′′ are locally closed conical
subsets of An, then

FU′∪U′′ (T ) = FU′ (T ) + FU′′ (T ) − FU′∩U′′ (T ) .

It is also multiplicative, in the following sense: Let U ′ ⊆ An′, U ′′ ⊆ An′′ be locally closed
conical affine varieties. Then

FU′×U′′ (T ) = FU′ (T ) · FU′′ (T ) .

Thefirst part of Lemma4.2 follows from the additivity property ofChern-Schwartz-MacPherson
classes, cf. (11). The second part of the lemma is perhaps subtler than it looks. If U ′ ⊆ An and
U ′′ ⊆ Am, then the left-hand side refers to a CSM class computed in Pm+n. Standard product
formulas for CSM classes reduce the right-hand side to a computation for a locally closed subset of
Pm×Pn. Comparing classes in these two different completions ofAm+n requires somework, carried
out in [57]. An alternative approach, pointed out by Schürmann and by Weber ([32]), interprets the
polynomial FU (T ) in terms of equivariant Chern-Schwartz-MacPherson classes, and the product
formula is straightforward from this point of view.

Lemma 4.2 justifies the following definition. Recall that for a graph G with n edges, Y̌G denotes
the complement An r X̌G of the affine hypersurface defined by the graph polynomial ΨG .

Definition 4.1. The Chern-Schwartz-MacPherson Feynman rules assign to every graph G the
polynomial

CG (T ) = FY̌G (T )

in Z[T]. y

By Lemma 4.2,
CG (T ) = CG1 (T ) · CG2 (T )

if G consists of the disjoint union of G1 and G2, possibly joined at a single vertex. Thus the
Chern-Schwartz-MacPherson Feynman rules are abstract (and algebro-geometric) Feynman rules
in the sense introduced in §4.3. The propagator is Ce (T ) = FA1 (T ) = 1 + T . Comparing with the
motivic propagator U(e) = L, it is tempting to view the variable T as somehow related with the
‘torus’ k∗, whose Grothendieck class is L − 1.

Example 4.6. Explicit computations may be carried out in several cases using the methods sum-
marized in 3.3, and are aided by properties of Chern-Schwartz-MacPherson Feynman rules that
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we will list below. For the n-banana graph Gn of Example 4.4, one obtains the remarkably simple
expression

CGn (T ) = T (T − 1)n−1 + nTn−1 . (20)

This expression should be compared, both for similarities and differences, with (19). In particular,
note that a simple substitution such as T = L − 1 does not lead to a match of these expressions. y

We collect below several properties of the new polynomial graph invariant. Most follow easily
from the definition and from Lemma 4.2.

• The polynomial CG (T ) is of the form

Tn + (n − b1(G))Tn−1 + lower degree terms ,

where n is the number of edges of G.

• CG′ (T ) = (1+T )CG (T ) if G′ is obtained from G by splitting an edge or attaching an edge to
a single vertex.

• CG′ (T ) = TCG (T ) if G′ is obtained from G by attaching a looping edge to a vertex.

• CG (0) = 1 if G is a forest. In fact, CG (T ) = (1+T )n if G is a forest with n edges; in particular

• CG (0) = 0 if G is not a forest.

• C ′G (0) = χ(YG), the Euler characteristic of the projective graph hypersurface complement.

Example 4.7. Let Gn be an n-sided polygon. Then Gn may be obtained by splitting the single edge
of a looping edge n − 1 times, and it follows that CGn (T ) = T (T + 1)n−1.

This may of course be verified directly: the graph polynomial for a polygon is t1 + · · · + tn,
therefore Y̌Gn = A

n − An−1, hence

CGn (T ) = FAn−An−1 (T ) = FAn (T ) − FAn−1 (T ) = (1 + T )n − (1 + T )n−1 ,

where we used the first part of Lemma 4.2 and the result obtained in Example 4.5. y

Example 4.8. Let Gn again be the n-banana graph. Then the Euler characteristic of the graph
hypersurface XGn defined by the Kirchhoff-Tutte-Symanzik polynomial of Gn (whose complement
in Pn−1 is YGn ) is

χ(XGn ) = n + (−1)n

for n ≥ 2. (Indeed, χ(YGn ) = C ′Gn
(0) = (−1)n−1 according to (20).) y

The equality χ(YG) = C ′G (0) follows from a more refined result, relating CG (T ) directly with
the Chern-Schwartz-MacPherson class of the projective complement YG = Pn−1 r XG . Namely,
one may verify that if

CG (T ) = a0 + a1T + · · · + anTn ,

then
cSM(YG) = a1[P0] + · · · + anTn−1 (21)
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Thus, the coefficient of T in CG (T ), that is, a1 = C ′G (0), equals
∫

cSM(YG) = χ(YG) by the
singular/noncompact Poincaré-Hopf theorem (cf. (12)).

Summarizing, if G is not a forest, then

CG (T ) = χ(YG)T + · · · + (n − b1(G))Tn−1 + Tn . (22)

Incidentally, this expression along with Lemma 4.2 clarifies in what sense the Euler characteristic
of the projective complement YG fails to be multiplicative on disjoint unions, i.e., to be an abstract
Feynman rule: if G = G′ q G′′ (and neither G′ nor G′′ are forests), then

CG (T ) = CG′ (T )CG′′ (T ) = χ(YG′) χ(YG′′)T2 + · · · :

while χ(YG) = 0, since this equals the coefficient of T in CG (T ), the information of the product
χ(YG′) χ(YG′′) is preserved in the Chern-Schwartz-MacPherson Feynman rules, as the coefficient
of T2.

All coefficients in (22) may be interpreted in terms of Euler characteristics. We do not have a
reference for the following result, so we will provide a proof.

Proposition 4.3. Let G be a graph that is not a forest, and let

CG (T ) = a1T + a2T2 + · · · + anTn .

Denote by ei, i = 0, . . . , n − 1, the topological Euler characteristic of the intersection of YG with a
general linear subspace of codimension i in Pn−1. Then a1 = e0 and

ak =
n−1∑

i=k−1

(
i − 1
k − 2

)
ei

for k = 2, . . . , n,

ek =
n∑

i=k+1

(
i − 2
k − 1

)
(−1)i−k−1ai

for k = 1, . . . , n − 1.

Proof. As pointed out in (21), the coefficients of CG (T ) determine cSM(YG). We assemble these
coefficients in the polynomial

γ(t) :=
n∑

k=1
aktk−1 .

We also assemble the Euler characteristics of general linear sections in a polynomial:

χ(t) :=
n−1∑
k=0

χ(YG ∩ Lk ) · (−t)k ,

where Lk is a general linear subspace Pn−1−k of codimension k. (So, for instance, the constant term
of χ(t) equals χ(YG).) By [28, Theorem 1.1], the polynomials γ(t) and χ(t) are interchanged by
the involution

p(t) 7→
t · p(−t − 1) + p(0)

t + 1
.

This statement implies the two given expressions. �
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The last issue we want to discuss is whether the Chern-Schwartz-MacPherson Feynman rules
satisfy deletion-contraction or multiple edge formulas analogous to (17) (for Tutte-Grothendieck
invariants) or the formula given in Theorem 4.1 (for the motivic Feynman rules).

Determining general deletion-contraction formulas for Chern-Schwartz-MacPherson Feynman
rules is in fact an open question. Let G be a graph, and let e be an edge of G; we assume that e
is ‘regular’, that is, it is not a bridge or a looping edge of G, and G r e is not a forest. (These
excluded cases are easy to treat separately.) We have a precise result if G and e satisfy two technical
conditions, which we summarize as follows.

• Condition I: The Kirchhoff-Tutte-Symanzik graph polynomial ΨG belongs to the Jacobian
ideal of ΨGre.

• Condition II: The proper transform of XG ⊆ P
n−1 intersects transversally the exceptional

divisor in a suitable blow-up.

The reader may find a more explicit statement of these conditions in [61, §2]. These conditions
are needed in order to control the relevant intersection theory in a blow-up construction that relates
the graph hypersurface of G with the graph hypersurfaces of the deletion G r e and contraction
G/e.

Theorem 4.4. Assume G is a graph, and e is a regular edge of G for which conditions I and II hold.
Then

CG (T ) = FY̌Gre∪Y̌G/e
(T ) + (T − 1) CGre (T )

Further
CG2e (T ) = (2T − 1) CG (T ) − T (T − 1) CGre (T ) + CG/e (T ) .

Just as in the analogue for the motivic Feynman rules, stated in Theorem 4.1, the first formula
includes an unavoidable term that is not determined by a single graph hypersurface.

We do not know of a combinatorial translation of the two technical conditions on which this
statement relies; the first condition is studied from a combinatorial perspective in [62], but without
reaching a characterization. There is however one case where the conditions automatically hold.
The following is [61, Lemma 2.3].

Lemma 4.5. Let G be a graph and let e be a regular edge of G. Assume that e has parallel edges
in G. Then conditions I and II hold for G, e.

Therefore, we can give a multiple edge formula that does not rely on the technical conditions
listed above.

Corollary 4.6. Let G be a graph and let e be a regular edge of G. Then for m ≥ 1

CG(m+3)e (T ) = (3T − 1)CG(m+2)e (T ) − (3T2 − 2T )CG(m+1)e (T ) + (T3 − T2)CGme (T ) .

Example 4.9. Coming back once again to the example of n-bananas, (20), the recursion in Corol-
lary 4.6 implies the identity

(T (T − 1)m+2 + (m + 3)Tm+2) = (3T − 1)(T (T − 1)m+1 + (m + 2)Tm+1)

− (3T2 − 2T )(T (T − 1)m + (m + 1)Tm) + (T3 − T2)(T (T − 1)m−1 + mTm−1) .

31



P
o
S
(
M
A
2
0
1
9
)
0
1
2

Intersection theory, characteristic classes, and Feynman rules P. Aluffi and M. Marcolli

In fact, an explicit computation of the Chern-Schwartz-MacPherson Feynman rules for the 2-banana,
the 3-banana, and the 4-banana suffice in order to obtain the general formula (20), by means of
Corollary 4.6. y

5. Epilogue

We have reviewed the apparatus of modern intersection theory in algebraic geometry and
discussed an application in the form of a theory of ‘characteristic classes’ for possibly singular,
possibly noncompact algebraic varieties. We have further illustrated this application by means
of the example of graph hypersurfaces, whose study is motivated by the structure of perturbative
quantum field theory.

We hope that this excursion will raise the reader’s interest in this aspect of algebraic geometry.
Whether this can be useful in the study of Feynman amplitudes in the style of the other talks in the
MathemAmplitudes workshop will stand as an open question. Can one construct a ‘CSM class’ in
twisted cohomology? Is there a good notion of ‘twisted’ algebro-geometric Feynman rules? Do
relations among cSM classes of relevant loci imply relations of corresponding Feynman amplitudes?
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