From Diagrammar to Diagrammalgebra
Published on:
February 15, 2022
Abstract
Analytic and algebraic properties of Feynman integrals are investigated within the de Rham theory for twisted co-homology. Linear relations, equivalent to integration-by-parts identites, differential and difference equations, as well as quadratic relations are derived by projections, using the intersection numbers. The presented results apply to the general class of Aomoto-Gel’fand-Euler integrals.
DOI: https://doi.org/10.22323/1.383.0015
How to cite
Metadata are provided both in "article" format (very similar to INSPIRE) as this helps creating
very compact bibliographies which can be beneficial to authors and
readers, and in "proceeding" format
which is more detailed and complete.