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1. Introduction

The presence of the ionic lattice in solid materials makes the physical description of condensed
matter systems intrinsically non-relativistic. Usually the standard approach to include the effects
of the lattice on the electronic plasma is to treat it as an external source of momentum dissipation.
Many strongly coupled electronic systems, such as High Temperature superconductors also tends
to break translations spontaneously, developing spatial modulations with a periodicity incommen-
surate to that of the ionic lattice. This ordered phases are commonly called charge density wave
(CDW) and spin density wave orders. In this respect, one can imagine that the electronic fluid is
breaking translational order spontaneously even though translations are in principle already broken
by the presence of the ionic lattice. Eventually, constructing strongly coupled effective field theo-
ries to model the behavior of these system is extremely relevant, and it has been one of the leading
topic in applied holography in recent years (see e.g. [6, 7, 8, 9, 10, 11, 12, 13, 14]).

At the level of constructing an effective field theory for these system (see e.g. [15]), the
standard approach is to couple a charged plasma to a set of scalars which spontaneously acquire a
VEV proportional to the space-time coordinates:

〈Φi〉 ∼ xi . (1.1)

1



P
o
S
(
M
o
d
a
v
e
2
0
1
9
)
0
0
1

How to construct a holographic EFT for phonons Andrea Amoretti

The holographic model described in these notes mimic exactly this construction, coupling the stan-
dard Einstein-Maxwell-Dilaton theory to a set of massless scalar fields ψi those VEVs will be
proportional to the boundary space coordinates xi. The main goal of the present manuscript is to
explain how to construct thermodynamically stable phases which break translations and to analyze
the symmetry pattern of these class of model around their stable vacua.

The notes are organized as follows. In section 2 the basic properties of the system will be de-
scribed and eventually it will be proven that this model admit a thermodynamically stable phase in
which an operator acquires a spatially modulated VEV without having a source. Said otherwise, we
will prove that within the range of allowed parameters, the model has a phase in which translations
are spontaneously broken. In section 3, using a technique illustrated in [16] we will prove that the
Ward Identities associated to the holographic model are exactly the ones expected for a conformal
field theory deformed by a scalar operator which can break translations either spontaneously or
explicitly. Finally, some concluding remarks can be found in section 4.

2. A model for thermodynamically stable phases

We consider the family of holographic theories:

S =
∫

d4x
√
−g

[
R− 1

2
∂φ

2−V (φ)− 1
4

(
Z1(φ)+λ1Z2(φ)

2

∑
i=1

∂ψ
2
i

)
F2

−1
2

2

∑
I=1

(
Y1(φ)∂ψ

2
i +λ2Y2(φ)

(
∂ψ

2
i
)2
)]

. (2.1)

Here there is no implicit summation on i indexes. The equations of motion are

0 =Gµν −
1
2

(
Z1(φ)+λ1Z2(φ)

2

∑
i=1

∂ψ
2
i

)
FµρFν

ρ − 1
2

∇µ∇νφ

− 1
2

2

∑
i=1

∂µψi∂νψi

(
Y1(φ)+2λ2Y2(φ)∂ψ

2
i +

λ1

2
Z2(φ)F2

)
+

gµν

4

(
2V (φ)+∂φ

2 +
1
2

Z1(φ)F2 +
2

∑
i=1

∂ψ
2
i

(
Y1(φ)+λ2Y2(φ)∂ψ

2
i +

λ1

2
Z2(φ)F2

))
,

(2.2)

0 = ∇µ

((
Z1(φ)+λ1Z2(φ)

2

∑
i=1

∂ψ
2
i

)
Fµν

)
, (2.3)

0 =�φ − 1
4

(
Z′1(φ)+λ1Z′2(φ)

2

∑
i=1

∂ψ
2
i

)
F2−V ′(φ)− 1

2

2

∑
i=1

(
Y ′1(φ)∂ψ

2
i +λ2Y ′2(φ)

(
∂ψ

2
i
)2
)
,

(2.4)

0 = ∇µ

((
Y1(φ)+∂ψ

2
i

(
2λ2Y2(φ)+

λ1

2
Z2(φ)F2

))
∇

µ
ψi

)
, i = 1,2 . (2.5)
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We will leave the scalar couplings arbitrary, except for specifying their UV φ → 0:

V (φ)∼−6+
1
2

m2
φ

2 + . . . , Z1(φ)∼ 1+ z2φ
2 + . . . , Z2(φ)∼ z2φ

2 + . . . ,

Y1(φ) = Y2(φ)∼ y2φ
2 + . . .

(2.6)

and IR φ → ∞ asymptotics

VIR =V0e−δφ , ZIR = Z0eγφ , YIR = Y0eλφ , φ = κ logφ ,

λ1 IR = Λ̃1eλ̃1φ
λ2 IR = Λ̃2eλ̃2φ .

(2.7)

This ensures that the model remains asymptotically anti-de Sitter in the UV, while the specific form
of the metric in the IR encodes the possibility to consider hyperscaling violating geometries (see
[8] for more details on the effects of these geometries on the transport properties of this specific
model).

2.1 Background analysis

Our Ansatz for the background is:

ds2 =−D(r)dt2 +U(r)dr2 +C(r)d~x2 , A = A(r)dt , φ = φ(r) , ψi = kδi jx j . (2.8)

2.1.1 Background UV asymptotic

From now on we will restrict to the case where d = 2 and we set the mass squared of the scalar
potential to m2 =−2. The UV expansion of the background (in Fefferman-Graham gauge) reads

D(r) =
1
r2

(
1− φ 2

1
8

r2 +d3r3 +O(r4)

)
U(r) =

1
r2

C(r) =
1
r2

(
1− φ 2

1
8

r2−
(

d3

2
+

1
3

φ1φ2

)
r3 +O(r4)

)
φ(r) = φ1r+φ2r2 +O(r4)

A(r) = µ−ρr+O(r3) ,

(2.9)

where subleading coefficients are fixed in terms of the VEVs ρ , φ2 and d3. The asymptotic expan-
sion for the fields ψi changes if one considers φi = 0 or φ1 6= 0. This is due to the particular UV
form of the potential Y (φ) we have chosen. In fact, in the case φ1 = 0 the equation of motion (2.5)
implies

ψi =
ψi (−1)

r
+ψi (0)+O(r) . (2.10)

Eventually, the choice of the background ansatz (2.8) implies that, if φ1 = 0, we are considering
a theory in which the operators ψi have a VEV which breaks translations while having no source,
since the leading term

ψi (−1)
r in (2.10) is set to zero. This is equivalent to have an operator which

breaks translations spontaneously. On the other hand, in the case φ1 6= 0, it is easy to see that the
UV expansion for ψi reads:

ψi = ψi (0)+O(r) , (2.11)

3
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which means that the ansatz (2.8) corresponds, in this case, to a theory in which the ψi operators
are breaking translations explicitly with an explicit spatially modulated source kxi. In what follows
we will analyze separately the two different symmetry breaking patterns by computing explicitly
the Ward identities for the theory.

2.1.2 Background IR asymptotic and thermodynamics

We are interested in studying finite temperature states, which corresponds to introduce a black
hole with a regular horizon at r = rh in the bulk gravitational theory. Eventually the background
fields of the theory have the following near horizon behavior:

ds2 =−4πT (rh− r)dt2 +
dt2

4πT (rh− r)
+

s
4π

(dx2 +dy2)+ ...

At = Ah(rh− r)+ ... , φ = φh + ... ,

(2.12)

where T and s are the temperature and the entropy of the black hole respectively, namely:

s = 4πC(rh) , T =
1

4π

√
−B′(r)D′(r)

B2(r)

∣∣∣∣∣
r=rh

. (2.13)

There are two radially conserved quantities in the background equations. The first simply
gives the UV charge density and relates it to the electric flux emitted from the horizon

ρ = −C(r)A′(r)√
BD

(
Z1(φ)+2λ1k2 Z2(φ)

C

)∣∣∣∣
r=rh

, (2.14)

The second radially conserved quantity is defined by the relation:[
−ρA(r)+

C2(r)√
U(r)D(r)

(
D(r)
C(r)

)′
+ k2IY1(r)+2λ2k4IY2(r)−λ1k2IZ2(r)

]′
= 0 , (2.15)

where

IY1(r) =
∫ r

rh

√
BDY1(φ) , IY2(r) =

∫ r

rh

√
BD
C

Y2(φ) , IZ2(r) =
∫ r

rh

Z2(φ)A′2√
BD

. (2.16)

In order to express the last identity in terms of the thermodynamical quantities of the theory, we
need to compute the renormalized on-shell action and eventually the pressure of the system.

The boundary terms needed to renormalize the background action are:

Sc.t. =
∫

r=ε

d3x
√
−γ

(
2K +4+R[γ]+

1
2

φ
2
)

, (2.17)

where γµν is the induced metric at r = ε and K is the trace of the extrinsic curvature. The renor-
malized on-shell action is:

Sren = lim
ε→0

[∫
d3x

(√
U(ε)D(ε)

(
4C(ε)√

U(ε)
+

C′(ε)
U(ε)

+
C(ε)D′(ε)
U(ε)D(ε)

)
+

1
2

√
D(ε)C(ε)φ(ε)2

−k2IY1(ε)−2λ2k4IY2(ε)+λ1ρ
2k2IZ2(ε)

)]
, (2.18)
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Evaluating the previous expression on the background (2.9) we obtain:

Sren =V
(
−k2IY1(0)−2λ2k4IY2(0)+λ1ρ

2k2IZ2(0)+
3d3

2

)
(2.19)

where V is the boundary volume. Note that the previous expression is independent on the source
of the scalar φ1 and holds both in the spontaneous and explicit case. However, k needs to be treated
differently in the two cases φ1 = 0 and φ1 6= 0. In the first scenario, k is a source and can be fixed
as a boundary condition of the theory. In this case the pressure is defined as:

Pexp =−
Sren

V
=−3d3

2
+ k2IY1(0)+2λ2k4IY2(0)−λ1ρ

2k2IZ2(0) . (2.20)

On the other hand, in the spontaneous case the free energy should be minimized with respect to k
to find the most stable phase. This is equivalent to imposing periodic boundary conditions on the
spatial coordinates xi, with periodicity Lx = 2π/k (see e.g. [17] for more details). Indeed, this is
exactly what we want to describe CDW states. Using (2.19), we get

IY1(0)+λ2k2IY2(0)−
1
2

λ1IZ2(0) = 0 , (2.21)

so that in the end
Pspont =−

Sren

V
=

3
2

d3 . (2.22)

We will see later how this affects the form of the equilibrium stress-energy tensor of the model in
the spontaneous and in the explicit case.

Having defined the pressure, upon evaluating the radially conserved quantity (2.15) both at the
boundary and at the horizon, one recovers the usual Smarr law:

E +P = µρ +T s , (2.23)

where E is the energy density. The previous expression is valid both in the spontaneous and in the
explicit case.

Having described the background geometry, the next question that needs to be addressed is
if the spontaneous phase just described exists as the endpoint of instabilities of the (translation
invariant) Reissner-Nordström black hole.

2.1.3 Dynamical instabilities of the Reissner-Nordström black hole

For simplicity, we require that Reissner-Nordström is a solution of the equations of motion
derived from (2.1). To this end, we consider the UV expansion (2.6) for the couplings around
φ = 0, while in the IR, it becomes an AdS2×R2 geometry:

ds2 =−dt2

ξ 2 +
dξ 2

6ξ 2 +dx2 +dy2 , φ = 0 , At =

√
2

ξ
, ψi = 0 . (2.24)

Importantly, k = 0 (or equivalently ψi = 0) in the solution (2.24), since we want our starting theory
to be invariant under translations.

We now perturb the solution (2.24) with the following radial fluctuations:

δφ = φ0ξ
δφ , δψi = kδi jx j . (2.25)

5
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The equations of motion for the ψi’s are automatically satisfied by our Ansatz. As one can see
from the equations of motion (2.2)-(2.5), having set φ = 0 in the background implies that the radial
perturbations involving the scalar decouple from those of the other fields, making the analysis a
lot easier. However, there is no conceptual obstacle to repeating this procedure over an AdS2×R2

domain-wall with φ 6= 0.
The IR dimension δφ of the operator dual to φ is easily obtained from the equation of motion

for φ

δφ =−1
2
+

1
6

√
9+6m2−72z2 +12k2 (y2−12z2λ1)+12y2λ2k4 . (2.26)

There is an instability whenever the radicand ∆ changes sign from positive to negative. In order
for this instability to be towards a phase with k 6= 0 (and so breaking translations spontaneously),
we need ∆(k)< 0 for 0 < k− < k < k+ where ∆(k±) = 0.

It is straightforward to check that this can easily happen in the allowed parameter space on
λ1,2, depending on the specific choice of scalar couplings. The couplings λ1,2 are constrained by
causality: [18] found a necessary condition on λ1, −1/6 < λ1 < 1/6. We take λ2 > 0 and defer a
more thorough analysis to future work.

For concreteness, we consider a model inspired by [19]:

V (φ) =−6cosh
(

φ√
3

)
, Z1(φ) = coshγ/3

(√
3φ

)
, Z2(φ) =

1
2

γ sinh2 (φ) ,

Y1,2(φ) = 12sinh2
(

φ√
3

)
,

(2.27)

for which the regime of dynamical instability is

γ <−4 , −1
6
< λ1 <

2
3γ

, 0 < λ2 <−
(2−3γλ1)

2

(1+12γ)
,

k̃− < k̃ < k̃+ , k̃± =
1
2

√√√√3γλ1

λ2
− 2

λ2
±

√
9γ2λ 2

1 +12γλ2−12γλ1 +λ2 +4

λ2
.

(2.28)

It is interesting to note that the new couplings λ1,2, even for small values, have changed the range
of values of γ where the dynamical instability lies (which for λ1,2 = 0 is γ >−1/12 [19]).

In such a case, we also expect a dynamical instability of the non-zero temperature translation-
invariant black hole towards a spatially modulated phase, which can be diagnosed by constructing
the corresponding normalizable mode at k 6= 0, see e.g. [20] for a concrete example. The outcome
of this computation is a so-called ‘bell curve’ which shows the evolution of the critical temperature
below which the condensate forms as a function of k. The most stable phase is found for k? such
that Tc(k?) is maximum.

We now turn to the construction of such a bell curve in our model (2.1) with couplings given
by (2.27). This implies constructing the unstable mode at non-zero temperature in the Reissner-
Nordström black hole background:

ds2 =−r2 f (r)dt2 +
dr2

r2 f (r)
+ r2(dx2 +dy2)

At = µ

(
1− rh

r

)
, f (r) = 1−

r3
h

r3 −
µ2rh

4r3

(
1− rh

r

)
, φ = ψi = 0.

(2.29)

6
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Figure 1: Instability curve Tc(k) of the Reissner-Nordström black brane for parameters γ =−6, λ1 =−0.13,
λ2 = 5.10−4.

As for zero temperature, the unstable mode obeys a decoupled equation of motion:

δφ
′′+

(
4
r
+

f ′

f

)
δφ
′+

(
−m2− 2Y2k2

r2 +
2r2

hµ2Z2λ1k2

r6 +
−2k4Y2λ2 + r2

hµ2Z2

r4

)
δφ

r2 f
= 0 . (2.30)

We impose regularity at the horizon and spontaneous boundary conditions in the UV. We pick val-
ues of γ and λ1,2 satisfying (2.28) and find that this mode exists below a certain critical temperature
Tc(k), see figure 1. Tc(k) has the bell shape typical in holography. It peaks at a certain critical value
k?, which we expect to be the dynamically preferred value for the backreacted black holes.

3. Symmetry pattern and Ward identities

Having constructed a stable vacuum for the theory, we need to analyze the symmetry pattern of
the model around this specific vacuum. This can be done by computing the Ward identities, which
is the main topic of the following sections. A similar computation applied to a simpler model can
be found in [16].

3.1 The spontaneous case φ1 = 0

3.1.1 The equilibrium stress-energy tensor

In order to compute the energy density let us work out the linearized on-shell action on the
fluctuation. Let us consider the fluctuation of the background fields:

gµν = ḡµν(r)+hµν(xM) , (3.1)

Aµ = Āµ(r)+ Âµ(xM) , (3.2)

φ = φ̄(r)+ φ̂(xM) , (3.3)

ψi = ψ̄i(r)+ ψ̂i(xM) , (3.4)

7
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where the barred fields are the background ones in (2.8), the Latin indexes run other the boundary
coordinates while the Greek one other the whole set of bulk coordinates and we have fixed the
radial gauge:

hrµ = Âr = 0. (3.5)

Using the background EOMs one can easily verify that the action (2.1), expanded up to linear order
in the fluctuations (3.1)-(3.4), reduces to a boundary term:

S(1)reg =
∫

r=ε

d3x
√
−gb

[
∇νhrν −∇

rhν
ν −δφ∂

r
φ

b−
(

Y1(φ)+
λ1Z2(φ)

2
F2
)

∑
i

δψi∂
r
ψ

b
i

−2λ2Y2(φ)∑
i

∂ψ
b 2
i δψi∂

r
ψ

b
i − (Z1(φ)+λ1Z2(φ)∂ψ

b 2)δAνFrν

]
, (3.6)

where the covariant derivatives are the ones of the background and the indices are risen and lowered
using ḡµν .

It is important to note that, in the case where the source for the scalar φ is set to zero, φ1 = 0,
the fluctuations assume the following UV boundary expansion:

hµν =
1
r2

(
h0µν(xµ)+h2µν(xµ)r2 +h3µν(xµ)r3 + ...

)
, (3.7)

Âµ = Â0µ(xµ)+ Â1µ(xµ)r+ ... , (3.8)

φ̂ = φ̂1(xµ)r+ φ̂(xµ)r2 + ... , (3.9)

ψ̂i =
ψ̂−1i(xµ)

r
+ ψ̂0i(xµ)+ ... . (3.10)

Due to this fact, one need to consider the following set of counterterms in order to renormalize
the action:

Sc.t. =
∫

r=ε

ddx
√
−γ

(
2K +4+R[γ]+

1
2

φ
2− 1

2

(
Y1(φ)+

λ1Z2(φ)

2
F2
)

∑
i
(ψi− kxi)

2

)
, (3.11)

Eventually, the renormalized on-shell action evaluated on the fluctuations (3.7)-(3.10) reads:

S(1)ren =
∫

d3x
[

3d3

2
h0tt +

3d3

4
h0xx +

3d3

4
h0yy−ρA0t −φ2φ̂1

]
. (3.12)

From the previous relation one can easily compute the expectation value of the stress energy tensor,
obtaining:

〈T tt〉 = E =−3d3 , (3.13)

〈T xx〉 = 〈T yy〉= P =−3d3

2
, (3.14)

〈Oφ 〉 = ϕ2 , (3.15)

〈Oψ〉 = 0 . (3.16)

In this case the stress energy tensor is equivalent to that of an ideal fluid.

8
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3.1.2 1-pt Ward identities

From the form of the stress energy tensor (3.13)-(3.16) one can easily derive the 1-pt Ward
identities. In particular, the stress energy tensor is traceless:

〈T µ

µ 〉= 0 , (3.17)

implying that dilatations are broken spontaneously. Regarding the 1-pt Ward identity for the trans-
lational symmetry, this is trivially satisfied (0=0), due to the isotropy of the background. This is a
general feature of this kind of model which breaks translations preserving the homogeneity of the
background and is valid also in the explicit (φ1 6= 0) case. This is due to the residual shift symmetry
ψi→+ψi +c enjoyed by the action (2.1). In fact, the background ansatz (2.8) breaks both transla-
tions and this shift symmetry, but leaves the diagonal group unbroken. Said otherwise, you one can
still absorb the effect a translation by shifting the scalars ψI leaving the background unchanged.
This symmetry pattern, which is the same used in [15], is the reason why the background in this
class of (axion-like) models does not depend on the space coordinates but translations are broken.
Consequently, in order to fully understand the features of the symmetry breaking pattern one needs
to analyze the 2-pt Ward identities, as we will do in the next section.

3.1.3 2-pt Ward identities

In order to compute the 2-pt Ward identities we need to evaluate the renormalized on-shell
action expanded at the second order in the fluctuations fields. Taking into account the boundary
fields expansions illustrated in the previous section, it reads:

S(2)ren =
∫

d3x
[
−3

4
h0µνhµν

3 +
3
4

hµ

0µ
hµ

3µ
+

3
2

ḡ3µν

(
hλ

0λ
hνλ

0 −
3
4

hµν

0 hλ

0λ

)
−3

4
ḡµ

3µ

(
h0νλ h0νλ − 1

2
hν

0νhλ

0λ

)
− 1

2
φ̂1φ̂2−

1
2

y2φ
2
2 ∑

i
ψ̂0iψ̂−1i

−1
2

(
Â0µ Âµ

1 −
ρ

2
hη

0η
Â0t −ρÂ0νhν

0t

)]
. (3.18)

In order to derive the the Ward identities we need first to use the zz and µz components of the
Einstein equations to re-express some of the h3µν in terms of the sources, namely:

∂
νh3µν −

1
3

φ2φ̂1 +
1
6

y2ϕ
2
2 ∑

i
kiµ ψ̂−1i +δ

η

t
ρ

6
(
∂ν Â0η −∂η Â0ν

)
− ḡ3νδ ∂λ hδλ

0 −
1
2

ḡ3ηλ ∂νhηλ

0 +
1
2

ḡ3νδ ∂
δ hλ

0λ
= 0 , (3.19)

3hµ

3µ
−3ḡµν

3 h0µν +2φ2φ̂1 = 0 . (3.20)

In order to implement the previous constraint it is necessary to consider the standard metric decom-
position:

h0µν = h(tt)0µν
+∂(µh(t)0ν)+ηµνh0 +

∂µ∂ν

�
H0 (3.21)
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where ∂ µh(tt)0µν
, h(tt)µ0µ

= 0 and ∂ µh(t)0µ
= 0. As a result of the decomposition above we obtain:

S(2)ren =
∫

d3x

[
−3

4
h(tt)0µν

h(tt)µν

3 +
1
8

y2ϕ
2
2 ∑

i
kν

i

(
h(t)0ν

+
∂νH0

�

)
ψ̂−1i−φ2

(
h0 +

1
2

H0

)
φ̂1

−1
2

φ̂1φ̂2−
1
2

y2φ
2
2 ∑

i
ψ̂i0ψ̂−1i−

1
2

Â0µAµ

1 −
1
4

ρÂ0t(3h0 +H0)

−1
2

ρÂ0νhν
0t +

1
8

ρ

(
hµ

0 +
∂ µH0

�

)(
∂µ Â0t −∂t Â0µ

)]
. (3.22)

To work out how the remaining VEVs depends on the sources we need to rely on gauge invariance.
In fact, under a general diffeomorphisms plus scale transformation the fields transform as:

δξ+β hµν = ∂µξν +∂νξµ −2βηµν ,

δξ+β φ̂ = ξµ∂
µ

φ̄ +β r∂rφ̄ ,

δξ+β ψ̂i = ξµ∂
µ

ψ̄i +β r∂rψ̄i ,

δξ+β Âµ = Āν∂µξ
ν −β Āµ ,

(3.23)

where ξµ is the vector which parametrize the diffeomorphisms transformation, while β is the pa-
rameter for the dilatations. Decomposing the vector ξ as ξµ = ξ

(t)
µ + 1

2
∂µ

� χ , and taking into account
the expansion (3.56) and the decomposition (3.21), we find:

δh(t)0µ
= 2ξ

(t)
µ , (3.24)

δH0 = χ , (3.25)

δh0 = −2β (3.26)

δ φ̂1 = 0 , (3.27)

δ φ̂2 = 2βφ2 , (3.28)

δψ̂−1i = 0 , (3.29)

δψ̂i0 = kµ

i

(
ξ
(t)
µ +

1
2

∂µ

�
χ

)
, (3.30)

δA0µ = Ā0ν

(
∂

µ
ξ
(t)ν +

1
2

∂µ∂ ν

�
χ

)
−β Ā0µ , (3.31)

δA1µ = Ā1ν

(
∂

µ
ξ
(t)ν +

1
2

∂µ∂ ν

�
χ

)
−β Ā1µ (3.32)

Eventually, the invariant combinations are:

Π
φ̂1

= φ̂1 , (3.33)

Π
φ̂2

= φ̂2 +h0φ2 , (3.34)

Πψ̂−1i = ψ̂−1i , (3.35)

Πψ̂i0 = ψ̂0−
kµ

2

(
h(t)0µ

+
∂µH0

�

)
, (3.36)

ΠÂ0µ
= Â0µ −

Āν
0

2

(
h(t)0µ

+
∂µH0

�

)
+

1
2

h0Ā0µ , (3.37)

ΠÂ1µ
= Â1µ −

Āν
1

2

(
h(t)0µ

+
∂µH0

�

)
+

1
2

h0Ā1µ , (3.38)

10
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We now express all the components of the metric sources introduced in (3.24)-(3.32) in terms of
projectors acting on h0µν :

h0 =
1
2

(
η

µν − ∂ µ∂ ν

�

)
h0µν , (3.39)

H0 =−
1
2

(
η

µν −3
∂ µ∂ ν

�

)
h0µν , (3.40)

h(t)0µ
= 2

(
∂ ν

�
δ

κ
µ −∂µ

∂ ν∂ κ

�2

)
h0νκ , (3.41)

h(tt)0µν
= T αβ

µν h0αβ , (3.42)

with

T αβ

µν = δ
α
µ δ

β

ν −2∂(µ

(
∂ α

�
δ

β

ν)−∂ν)
∂ α∂ β

�2

)

− 1
2

ηµν

(
η

αβ − ∂ α∂ β

�

)
+

1
2

∂µ∂ν

�

(
η

αβ −3
∂ α∂ β

�

)
. (3.43)

Using these expressions, the gauge invariant quantities become

Π
φ̂1

= φ̂1 , (3.44)

Π
φ̂2

= φ̂2 +
1
2
Pαβ h0αβ φ2 , (3.45)

Πψ̂−1i = ψ̂−1i , (3.46)

Πψ̂i0 = ψ̂0− kµDαβ

µ h0αβ , (3.47)

ΠÂ0µ
= Â0µ − Āν

0Dαβ

ν h0αβ +
1
2
Pαβ h0αβ Ā0µ , (3.48)

ΠÂ1µ
= Â1µ − Āν

0Dαβ

ν h0αβ +
1
2
Pαβ h0αβ Ā1µ , (3.49)

where the projectors Dαβ

µ and Pαβ are defined as follows

Dαβ

µ =
δ α

µ ∂ β +δ
β

µ ∂ α

2�
− ηαβ

4
∂µ

�
−

∂ α∂ β ∂µ

4�2 , Pαβ =

(
η

αβ − ∂ α∂ β

�

)
. (3.50)

Gauge invariance implies that

ψ̂i0 = kµ

i Dαβ

µ h0αβ +a(∂ )Πψ̂−1i +bi(∂ )Πφ̂1
+ ci(∂ )C̃ jlkµ

j kν
l h(tt)0µν

+d(∂ )kµ

i ΠÂ0µ
,

φ̂2 = −1
2
Pαβ h0αβ φ2 +∑

i

(
ei(∂ )Πψ̂−1i + li(∂ )k

µ

i ΠÂ0µ

)
+ f (∂ )Π

φ̂1
+g(∂ )S̃ jlkµ

j kν
l h(tt)0µν

,

h(tt)3µν
= m(∂ )h(tt)0µν

+ R̃i jkiαk jβ T αβ

µν

(
∑

i
ni(∂ )Πψ̂−1i +o(∂ )Π

φ̂1

)
+ p(∂ )T αβ

µν ∑
i

ki(αΠÂ0β )

where the unknown functions of ∂ can be determined only by solving the entire model. Plugging
the previous expressions in (3.22) one can obtain the form of the correlator. Let us focus, for the

11
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moment, on the mixed correlators between the stress energy tensor and the scalar operators ψ and
φ . They take the form:

〈T αβ (x)Oψi(x
′)〉= 2i

δS(2)ren

δψ̂−1iδh0αβ

=− i
2

y2〈Oφ 〉2kµ

i Dαβ

µ δ
3(x− x′)

− iT αβ

µν kµ

l kν
j

(
3
2

R̃l jni(∂ )+Y0O
2
φC̃l jci(∂ )

)
, (3.51)

〈T αβ (x)Oφ (x′)〉= 2i
δS(2)ren

δ φ̂iδh0αβ

=−i〈Oφ 〉
∂ α∂ β

�
δ

3(x− x′)

− iT αβ

µν kµ

l kν
j

(
3
2

R̃l jo(∂ )+ S̃l jg(∂ )
)

.

From the previous expressions the Ward identities for the ψi operator follow directly:

〈∂αT αβ (x)Oψi(x
′)〉=− i

2
y2〈Oφ 〉2kβ

i δ
3(x− x′) , 〈T α

α (x)Oψi(x
′)〉= 0 . (3.52)

To obtain the Ward identity for the φ operator one needs to implement the following shift:

〈Tµν〉QFT = 〈Tµν〉+
1
2

ηµν〈Oφ 〉 (3.53)

so that:
〈Tµν(x)Oφ (x′)〉QFT = 〈Tµν(x)Oφ (x′)〉+ i〈Oφ 〉δ 3(x− x′) . (3.54)

The shift is needed to properly define the stress-energy tensor of the dual Quantum Field Theory in
the presence of external sources, as explained in [21].

Eventually, the final Ward identities are:

〈T µ

µ (x)Oφ (x′)〉QFT = 2i〈Oφ 〉δ 3(x− x′) , 〈∂µT µν(x)Oφ (x′)〉QFT = 0 (3.55)

This shows that in the spontaneous case the operator ψi is responsible for the breaking of transla-
tions only, while the operator φ takes into account the spontaneous breaking of dilatations.

3.2 The explicit case φ1 6= 0

In the explicit case the computation proceeds as in the previous sections, however, due to the
fact that the background scalar field acquires a source φ ∼ φ1z+φ2z2, the boundary expansion for
the fluctuations is modified as follows:

hµν =
1
r2

(
h0µν(xµ)+h2µν(xµ)r2 +h3µν(xµ)r3 + ...

)
, (3.56)

Âµ = Â0µ(xµ)+ Â1µ(xµ)r+ ... , (3.57)

φ̂ = φ̂1(xµ)r+ φ̂(xµ)r2 + ... , (3.58)

ψ̂i = ψ̂0i(xµ)+ ψ̂1i(xµ)r+ ... . (3.59)

This implies that in the explicit case the constant term of ψ̂i is a source instead of a VEV. Eventually,
the counterterms needed to renormalize the action are the usual ones expected for the Einstein-
Maxwell-Dilaton model (see e.g. [21]):

Sc.t. =
∫

r=ε

ddx
√
−γ

[
2K +4+R[γ]+

1
2

φ
2
]
, (3.60)

12
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3.2.1 1-pt Ward identities

The renormalized on-shell action linear in the fluctuations reads:

S(1)ren =
∫

d3x
[

1
2
(3d3 +φ1φ2)h0tt +

3d3

4
h0xx +

3d3

4
h0yy−ρA0t −φ2φ̂1

]
. (3.61)

From the previous relation one can easily compute the expectation value of the stress energy tensor,
obtaining:

〈T tt〉 = E =−3d3−φ1φ2 , (3.62)

〈T xx〉 = 〈T yy〉= P− k2IY1(0)−2λ2k4IY2(0)+λ1ρ
2k2IZ2(0) , (3.63)

〈Oφ 〉 = ϕ2 , (3.64)

〈Oψ〉 = 0 . (3.65)

Observe that 〈T ii〉 6= P, which signals that the dual stress-energy tensor is not that of a fluid. Indeed
it is compatible with the equilibrium stress-tensor of an isotropic, conformal crystal [22, 23]:

〈T i j
eq〉= [p− (G+K)∂ · 〈Ψ〉]δ i j−2G

[
∂
(i〈Ψ j)〉−δ

i j
∂ · 〈Ψ〉

]
, (3.66)

with K and G the bulk and shear moduli respectively. The bulk modulus only contributes to di-
agonal elements, the shear modulus only to off-diagonal elements. Since our background Ansatz
is isotropic, the boundary phonons are simply 〈Ψi〉 = xi, and the off-diagonal elements of (3.66)
vanish. A linear response analysis is thus needed to determine G. Equations (3.62, 3.66) lead us to
identify the bulk modulus as

K = k2IY1(0)+2λ2k4IY2(0)−λ1ρ
2k2IZ2(0) , (3.67)

which is positive with our definition of the I integrals.
From (3.62), one can read the 1-pt Ward identity for the trace of the stress energy tensor, which

assumes the usual form of a theory deformed by a scalar operator:

〈T 〉=−φ1φ2 =−φ1〈Oφ 〉 (3.68)

As in the spontaneous case, the 1-pt Ward identity for translation is trivially satisfied due to the
homogeneity of the background, and one needs to analyze the 2-pt Ward identities in order to
achieve some knowledge about the dynamics of the system.

3.2.2 2-pt Ward identities

Due to the differences in the boundary expansions of the fields φ̂ and ψ̂i, the quadratic on-shell
action is modified as follows:

S(2)ren =
∫

d3x
[
−3

4
h0µνhµν

3 +
3
4

hµ

0µ
hµ

3µ
+

3
2

ḡ3µν

(
hλ

0λ
hνλ

0 −
3
4

hµν

0 hλ

0λ

)
−1

4
(3ḡµ

3µ
+φ1φ2)

(
h0νλ h0νλ − 1

2
hν

0νhλ

0λ

)
− 1

2
φ̂1φ̂2−

y2

2
φ

2
1 ∑

i
ψ̂0iψ̂1i

+
1
4

φ1hη

0η
φ̂2−

1
2

(
Â0µ Âµ

1 −
ρ

2
hη

0η
Â0t −ρÂ0νhν

0t

)]
. (3.69)
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Moreover, the constraints (3.19)-(3.20) acquire corrections due to the presence of a source for φ̂ :

∂
νh3µν −

1
3

φ2φ̂1−
1
3

φ1∂ν φ̂2−
1
6

φ
2
1 ∑

i
kiµ ψ̂1i +δ

η

t
ρ

6
(
∂ν Â0η −∂η Â0ν

)
− ḡ3νδ ∂λ hδλ

0 −
1
2

ḡ3ηλ ∂νhηλ

0 +
1
2

ḡ3νδ ∂
δ hλ

0λ
= 0 , (3.70)

3hµ

3µ
−3ḡµν

3 h0µν +2φ2φ̂1 +2φ1φ̂2 = 0 . (3.71)

The gauge invariant combinations (3.44) remain the same, except the ones for the fields ψi which
are modified as follows:

Πψ0i = ψ̂0i− kµDαβ

µ h0αβ ,

Πψ1i = ψ̂1i ,
(3.72)

so that requiring gauge invariance implies the following relations between VEVs and sources:

ψ̂i1 = a(∂ )Πψ̂0i +bi(∂ )Πφ̂1
+ ci(∂ )C̃ jlkµ

j kν
l h(tt)0µν

+d(∂ )kµ

i ΠÂ0µ
,

φ̂2 = −1
2
Pαβ h0αβ φ2 +∑

i

(
ei(∂ )Πψ̂0i + li(∂ )k

µ

i ΠÂ0µ

)
+ f (∂ )Π

φ̂1
+g(∂ )S̃ jlkµ

j kν
l h(tt)0µν

,

h(tt)3µν
= m(∂ )h(tt)0µν

+ R̃i jkiαk jβ T αβ

µν

(
∑

i
ni(∂ )Πψ̂0i +o(∂ )Π

φ̂1

)
+ p(∂ )T αβ

µν ∑
i

ki(αΠÂ0β )

where the arbitrary functions of ∂ should be determined by actually solving the equations of mo-
tion.

Eventually, the mixed correlators acquire the following form:

〈T αβ (x)Oψi(x
′)〉= 2i

δS(2)ren

δψ̂0iδh0αβ

=−ikµ

l kν
j T αβ

µν

(
3
2

R̃l jni(∂ )+C̃l jci(∂ )

)
− i

2
y2φ

2
1 kν

i Dαβ

ν a(∂ )− iφ1P
αβ ei(∂ ) (3.73)

〈T αβ (x)Oφ (x′)〉= 2i
δS(2)ren

δ φ̂1δh0αβ

=−i
3
2

S̃l jkµ

l kν
j T αβ

µν g(∂ )

−2iφ2
∂ µ∂ ν

�
δ

3(x− x′)− iφ1P
αβ f (∂ )− i

2 ∑
i

kµ

i y2φ
2
1 Dαβ

µ bi(∂ ) (3.74)

Finally, the two point Ward identities are:

〈T µ

µ Oψi〉=−i2φ1ei(∂ ) , 〈∂µT µνOψi〉=−ikν
i y2φ

2
1 a(∂ ) (3.75)

〈T µ

µ Oφ 〉=−2iφ2δ
3(x− x′)−2iφ1 f (∂ ) , 〈∂µT µνOφ 〉=−

i
2

y2φ
2
1 ∑

i
kν

i bi(∂ ) (3.76)

The function ei(∂ ) can be adsorbed in the definition of the correlators by using the residual trans-
lation+shift symmetry of the system. Finally, using the holographic dictionary and the redefining
the stress-energy tensor as in (3.54), one finds:

〈T µ

µ Oψi〉= 0 , 〈∂µT µνOψi〉=−ikν
i ∑

j
〈Oψ jOψ j〉 (3.77)
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〈T µ

µ Oφ 〉= 2i〈Oφ 〉δ 3(x− x′)−φ1〈OφOφ 〉 , 〈∂µT µνOφ 〉=−∑
i

kν
i 〈OφOψi〉 (3.78)

This shows that the operator φ remains the only responsible for the breaking of dilatation. How-
ever, due to operator mixing, both the operator ψ and φ couple together in the Ward identity for
translations. The mixed correlator 〈OφOψi〉 is of order k2 so it can be neglected in the low k ex-
pansion when computing the scattering rate. However, when the source φ1 is of the same order of
k both the modes should be taken into account.

4. Conclusions

Having analyzed the stability of the spontaneously broken phase and the ward identities of
the model, the reader should by now be convinced that the model presented is a good holographic
EFT to describe spontaneous symmetry breaking of translations. The additional shift symmetries
of the fields ψi, as already mentioned, is the responsible for the homogeneity of the background
and makes the analysis of the model relatively simple, so that the basic properties of the theory can
be tested without recurring to intense computational effort. The next step in the analysis would
be to actually solve the model and analyze the properties of the correlators and eventually of the
transport coefficients of the theory. A detailed discussion on the transport coefficients of the theory
can be found in [8, 9, 10, 12, 13, 24, 25]. I suggest the interested reader to go trough this papers
in order to understand the details of the correlators structure, since, as previously mentioned, I
voluntarily kept the discussion in these lecture notes schematic, mainly focusing on the aspects of
the model not previously analyzed in the literature.

Finally, it is worth to mention that other holographic models which describe the spontaneous
symmetry breaking of translations have been studied in recent years. One of them breaks trans-
lations in the dual field theory by introducing a suitable mass term for the graviton in the bulk
which breaks diffeomorphisms in a controlled way, the so called massive gravity model (see e.g.
[14, 26, 27] and references therein). The second one introduces translations symmetry breaking
considering models with a spatially modulated charge density (see e.g. [6]). It would be interest-
ing to analyze systematically similarities and differences between these two models and the theory
presented in these notes.
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