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1. Introduction

Topological quantum field theories are characterized by the property that their observables
only depend on the global characteristics of the space on which they are defined. In other words,
their observables compute topological invariants of said space, and thus, in particular, don’t depend
on the metric. As any quantum field theory, a TQFT can be studied in a Hamiltonian framework or
using its Lagrangian description and the path integral. The former approach is characterized by a
trivial Hamiltonian H = 0. Nevertheless, nontrivial propagation does occur through topologically
nontrivial spacetimes. This approach was axiomatized in [1] and is the subject of the first part of
these lecture notes.

In the path integral approach to topological quantum field theory two distinct mechanisms have
been developed to ensure that observables are independent of the metric. The first one, not covered
in these lectures, insists on that neither the action nor the observables have any explicit metric
dependence. Such topological quantum field theories are called of Schwarz-type, after the author
of the paper [2]. An important example of this type is three-dimensional Chern-Simons theory,
which facilitates the computation of invariants of three-manifold and knots embedded therein [3].
The second mechanism is cohomological in nature: only after passing to the cohomology of a
particular nilpotent charge does the metric dependence disappear. Topological twisting provides a
powerful and widely applicable method to construct quantum field theories with a suitable nilpotent
charge [4]. The second part of these lecture notes studies this setup.

These notes do not intend to be original or comprehensive. For example, we have omitted the
rephrasing of the axiomatic definition of a topological quantum field theory in categorical language,
and have barely scratched the surface of cohomological quantum field theory and the computation
of its topological observables. Instead, these lectures aim to give a pedestrian introduction to the
above-mentioned topics. Many lecture notes, reviews, and text books are readily available, for
example [5, 6, 7, 8, 9], for the interested reader to continue their study of topological quantum field
theory.

These notes are organized as follows. In section 2 we briefly review some aspects of topology
and introduce cobordisms. In section 3, we develop the axiomatic approach to topological quantum
field theory, focusing in particular on two-dimensional theories. This section is largely based on
the excellent text book [8]. Finally, section 4 introduces cohomological topological quantum field
theories and explores Witten’s topological twisting, mostly following the seminal paper [4].

2. Topological properties and cobordisms

A topological quantum field theory is a quantum field theory defined on a topological space
whose observables compute topological properties of that space. Let us start by explaining the
mathematical ingredients of this definition.

2.1 Topological invariants

Mathematically, a topological space is an ordered pair (X ,τ), with X a set and τ a collection
of subsets of X , such that i) /0 and X belong to τ , ii) any arbitrary (finite or infinite) union of
elements of τ belongs to τ , and iii) the intersection of any finite number of elements of τ belongs
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to τ . The elements of τ are called open sets, while τ itself goes under the name of a topology on
X . Intuitively, a topology tells us which points of X lie “close” or “in the neighborhood” of each
other (without caring about any precise concept of distance). Indeed, the notion of a neighborhood
formalizes this intuition. A subset N ⊆ X is a neighborhood of a point x ∈ X if there exists an open
set U ∈ τ such that x ∈U and U ⊆ N. A few examples of topological spaces are as follows:

• for X any set, we can set τ equal to the collection of all subsets of X . This is called the
discrete topology.

• for X any set, we can take τ = { /0,X}. This is the so-called trivial topology.

• a simple example of a topological space that is neither discrete nor trivial is the Sierpinski
space. It is based on the set X = {0,1} and chooses τ = { /0,{0,1},{1}}.

• for applications in physics, the set X is most often a metric space and thus possesses a metric
specifying the distance between points. We can use the metric to endow such space with a
metric topology. The basic open sets are open balls defined by the metric and τ comprises
all their possible unions.

To introduce topological properties or invariants, we first define a function f : X →Y between
the topological spaces (X ,τX) and (Y,τY ) to be continuous if for all x ∈ X and all neighborhoods N
of f (x), there exists a neighborhood M of x such that f (M)⊆N.1 A homeomorphism f is a bijection
with both f and f−1 continuous. Two topological spaces with a homeomorphism between them are
essentially identical from the standpoint of topology. Finally, a topological property is a property
of a topological space that is invariant under homeomorphisms. For metric spaces with the metric
topology, roughly, a topological property is thus a property that does not depend on the choice of
metric.

2.1.1 Classification of connected, compact, topological surfaces

For orientable and closed surfaces a complete classification of topological surfaces is as fol-
lows.2 Either it is the sphere or it is the connected sum of g tori for g≥ 0. The topological property
that tells these spaces apart is the number of holes g, also known as the genus. One often also
considers the Euler characteristic χ = 2−2g.

For orientable surfaces with boundary, the above classification is extended by including the
count of the (finite) number k of windows/punctures. The Euler characteristic is now computed
as χ = 2− 2g− k. In fact, since the surface is orientable, we can keep track of the number of in-
and out-boundaries, kin and kout, separately. We denote a genus g surface with kin/out boundaries as
Σg;kin,kout .

Unorientable surfaces are classified topologically by their genus, their number of windows,
and their number of cross-caps c. The latter can take the values c = 0,1,2. For example, a sphere
with a cross-cap is the real projective plane, while a sphere with two cross-caps is the one-sided

1Note the analogy to the standard ε − δ definition of continuity first encountered in high school for real functions
f : R→ R.

2A closed surfaces is a compact surface without boundary. The intuitive notion of compactness of (X ,τ) can be
formalized in topology by stating that any open cover of X has a finite subcover.
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Figure 1: Simple examples of cobordisms M between m1 and m2.

surface of the Klein bottle. The Euler characteristic reads χ = 2− 2g− c− k. Note that if c ≥ 3,
one can replace pairs of cross-caps by handles.

2.2 Cobordisms

Cobordisms lie at the heart of the Hamiltonian picture of topological quantum field theory.
They are defined as follows. Consider two closed manifolds m1,m2 of dimension n−1. A cobor-
dism between m1 and m2 is then a compact n-manifold M whose boundary is (homeomorphic to)
m1tm2. See figure 1 for some two-dimensional examples.

Not all pairs of (n−1)-dimensional manifolds are cobordant to each other. For example, any
two closed one-manifolds are cobordant, but two closed 0-manifolds (a disjoint union of points)
are cobordant if and only if the total number of points is even.

For the purposes of these lectures, we will restrict attention to oriented cobordisms. An orien-
ted cobordism between two closed, oriented manifolds m1,m2 of dimension n− 1 is a compact,
oriented n-manifold whose in-boundary is (homeomorphic to) m1 and whose out-boundary is (ho-
meomorphic to) m2. (We will always be working up to diffeomorphisms and henceforth won’t
explicitly make the “up to homeomorphisms” disclaimer anymore.) We denote an oriented cobor-
dism as M : m1⇒ m2.

If m1 and m2 are homeomorphic, then an important cobordism is the cylinder:

A second important cobordism is the U-tube. Consider m and m̄, i.e., m with opposite orien-
tation. We can consider the cylinder m⇒ m̄, but as both boundaries are in-boundaries and the
out-boundary is empty, it is customary to represent it as in figure 2a. Similar statements hold for
the cylinder m̄⇒ m.

3
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(a) (b)

Figure 2: U-tube cobordisms.

Figure 3: Example decomposition of a cobordism.

Note that if n = 2, the topological surface Σg,kin,kout is a cobordism between tkinS1 and tkoutS1,
i.e., Σg,kin,kout : tkinS1⇒tkoutS1.

Let us next consider an oriented cobordism M : m1⇒ m2. Pictorially, we can slice it somew-
here in the middle, making sure that the slice is along an out-boundary, and thus find a decomposi-
tion of the original cobordism into two cobordisms M1 : m1⇒ m′ and M2 : m′⇒ m2, see figure 3.

In particular, for the cylinder, we find

A different decomposition of the cylinder is presented in figure 4a. It gives rise to the snake
decomposition, see figure 4b.

3. Axiomatic topological quantum field theory

In a Hamiltonian treatment of quantum field theory, we associate Hilbert spaces of states to
constant “time”, spatial slices, and we employ a time evolution operator (constructed in the usual
manner from the Hamiltonian operator) to evolve states forward in time through spacetime. In stan-
dard quantum field theory on Rn, the constant “time” slices are Rn−1 and the Hamiltonian generates
time-translations. In radial quantization of a conformal field theory, on the other hand, the constant
“time” slices are spheres Sn−1 centered at the origin and the Hamiltonian generates dilatations. In
topological quantum field theory, the spatial slices are (n−1)-dimensional manifolds. To each of
them, we assign a state space. What’s more, the Hamiltonian is zero, so no real dynamics takes
place when evolving along a cylinder. However, non-trivial propagation does occur if the interve-
ning manifold has nontrivial topology (and will only depend on that topology). In other words, the
full spacetime is an n-dimensional manifold and time evolution is described by that manifold.

4
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(a) (b)

Figure 4: The snake decomposition of the cylinder.

3.1 Definition of axiomatic TQFT

These considerations lead us to the definition of an n-dimensional topological quantum field
theory as introduced by Atiyah [1]. It is a rule Z which

i) assigns to each (n−1)-dimensional, closed, oriented manifold m a vector space Z(m)

ii) assigns to each oriented cobordism M : m1⇒ m2 a linear map Z(M) : Z(m1)→ Z(m2)

such that the following axioms hold:

A1: equivalent cobordisms must have the same images, i.e., if M is homeomorphic to M′ then
Z(M) = Z(M′)

A2: the cylinder m× I : m⇒ m maps to the identity map, i.e., Z(m× I) = idZ(m)

A3: if a cobordism M can be decomposed as M = M′M′′ then Z(M) = Z(M′′)◦Z(M′) (composi-
tion of linear maps)

A4: disjoint unions map to tensor products

– if m = m1tm2, then Z(m) = Z(m1)⊗Z(m2)

– if a cobordism M : m1⇒ m2 is the disjoint union of M′ : m′1⇒ m′2 and M′′ : m′′1 ⇒ m′′2 ,
then Z(M) = Z(M′)⊗Z(M′′)

A5: empty manifolds m = /0 map to the ground field K, which we will take to be simply C in
these lectures. An immediate consequence is that the cylinder over the empty manifold is the
identity map on K

Note that the first two axioms implement the topological nature of the theory.

3.2 Some immediate consequences

3.2.1 Pairing and copairing

Let m be a closed (n− 1)-manifold and let V = Z(m) and W = Z(m̄). Then we immediately
find the existence of a pairing

Z

( )
≡ β : V ⊗W →K (3.1)

5
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and a copairing

Z

( )
≡ γ : K→W ⊗V . (3.2)

Let us reconsider the snake decomposition of the cylinder, see figure 4b. It states that

V idV−−→V A3
= V

idV⊗γ−−−→V ⊗W ⊗V
β⊗idV−−−→V , (3.3)

where we also used axiom A4. Let’s denote β (v,w) = 〈w|v〉, and let’s specify the copairing γ by
γ(1K) = ∑

n
i=1 wi⊗ vi, where wi ∈W,vi ∈V . The snake then acts on an element x ∈V as

x 7→∑
i

x⊗wi⊗ vi 7→∑
i
〈wi|x〉vi . (3.4)

As the snake is a decomposition of the cylinder cobordism, we learn that x = ∑i〈wi|x〉vi. We thus
conclude that the pairing β is nondegenerate because if for all w ∈W , 〈w|x〉 = 0 then the snake
decomposition implies that x = 0, and, similarly, using the snake decomposition bending in the
other direction, that if for all v ∈V , 〈y|v〉= 0 then y = 0. With this nondegenerate pairing, we can
identify W =V ∗.

3.2.2 TQFTs and topological properties

Topological quantum field theories allow us to compute topological invariants. Indeed, let M
be a closed n-manifold whose topological properties we are interested in. M can be considered as
a cobordism M : /0n−1⇒ /0n−1. Acting with the rule Z, we find a linear map Z(M) : K→K. Linear
maps from the ground field to itself are fully specified by the constant Z(M)(1K). This constant is
a topological invariant as per the axioms that Z obeys, in particular axiom A1. It can be computed
explicitly by cutting up the manifold M in various ways and using axiom A3.

A simple example is the product manifold M =m×S1 for some (n−1)-manifold m. If Z(m) =

V , we immediately find by cutting M in half:

K Z(M)−−−→K = K γ−→V ∗⊗V
β−→K , (3.5)

and thus Z(M)(1K) = dimV .3 The dimension of the vector space assigned to the manifold m is
thus a topological invariant of M = m×S1.

3.3 Two-dimensional TQFTs

In a two-dimensional topological quantum field theory, we need to know the vector space
Z(S1) =V and a rule that maps any cobordism to a linear map subject to axioms A1-A5. However,
we know that we can cut up cobordisms and consider the relevant compositions (see A3). There-
fore, we can try to decompose any cobordism in terms of a small set of cobordisms that generate,
by composition, all cobordisms. If we know the corresponding linear maps of this generating set
of cobordisms, we have all necessary information that defines the TQFT.

3Some more details of this computation are as follows. Let ei be a basis for V and f j be a basis for V ∗. Further-
more, let γ : K→ V ∗⊗V : 1K 7→ ∑i, j γ i j f j ⊗ ei, and let β : V ⊗V ∗ → K be defined by 〈 f j|ei〉 = βi j. Then the snake
decomposition tells us that for all x =∼i λiei we have ∑i λiei = ∑i,k,l λiγ

lkβilek. Hence ∑l βilγ
lk = δ k

i .

6
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Figure 5: Generators of 2-cobordisms.

Figure 6: Pictorial proof that any 2-cobordism can be decomposed in terms of the generators of
figure 5.

3.3.1 Generators of 2-cobordisms and their relations

The full set of generators of 2-cobordisms is given in figure 5. We will assume symmetry of
tensor-factors and further mostly ignore the last one. To prove that this is the full set of cobordisms,
it is clearly sufficient to prove that any Σg;kin,kout can be composed with these ingredients. Figure 6
makes clear that this is indeed the case. Note that when kin = 0 or kout = 0 we will need the cup
and the cap.

The generators of figure 5 are not independent, but obey various relations. We give the list of
relations in figures 7-9 (omitting various other relations that involve the crossed cylinders). The
proof of this statement can be found, for example, in [8].

3.3.2 Two-dimensional TQFT as Frobenius algebra

Given the results of the previous subsection, our task when defining a two-dimensional TQFT
is thus to assign linear maps to all the generators in figure 5 and to make sure that these maps satisfy
the relations coming from the relations of these generators. Concretely, we have

S1 7→ A (3.6)

S1tS1t . . .tS1 7→ An (3.7)

7→ [idA : A→ A] (3.8)

7→ [η : K→ A] (3.9)

7→ [ε : A→K] (3.10)

7→ [µ : A2→ A] (3.11)

7→ [δ : A→ A2] (3.12)

7
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(a) Identity relations (b) Sewing in discs.

Figure 7: Relations among the generators of 2-cobordisms.

(a) (Co)-associativity (b) (Co)-commutativity.

Figure 8: Relations among the generators of 2-cobordisms.

Figure 9: Frobenius relation among generators of 2-cobordisms.

A priori, A carries the structure of a vector space. However, the additional structure dictated by the
images of the generators (satisfying the relations following from the images of figures 7-9) result in
the algebraic structure of a Frobenius algebra. Note that in particular µ is simply the multiplication
of the algebra. We have assumed it is commutative.

Example. Let us consider an explicit example. Let A = K[t]/tn, i.e., the polynomial ring in one
variable modded out by the ideal generated by tn. To make K[t]/tn into a Frobenius algebra, we
need to provide an additional datum, namely the so-called Frobenius form. It defines the image ε of
the cap. We take it to be ε : A→K : tn−1 7→ 1 and t i 7→ 0 for i < n−1. As for any two-dimensional
topological field theory, the cylinder maps to the identity operator idA : A→ A. Furthermore, as
mentioned above, µ : A2→ A is the multiplication of A. Finally, we also know that the image of
the cup (also known as the “unit”) is η : K→ A : 1K 7→ 1A.

Using the multiplication µ and the unit ε , we can construct the nondegenerate pairing β .
Concretely, we take the basis of A = K[t]/tn over K to be 1, t, t2, . . . , tn−1, and let us denote the
basis of A∗ as ft i , i = 0, . . . ,n−1. Then we find that 〈 ft i |t j〉 = ε(t it j) = ε(t i+ j) = δi+ j,n−1. Hence
we can identify ft i ' tn−1−i and A' A∗. The copairing γ can be obtained as the dual of the pairing
β . In our bases, it is given by γ : K→ A2 : 1K 7→∑i ft i⊗ t i = ∑i tn−1−i⊗ t i. With these data, we can

8
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construct the comultiplication δ : A→ A2 as

=
(3.13)

δ : A' A⊗K idA⊗γ−−−→ A⊗A⊗A
µ⊗idA−−−→ A⊗A : t i 7→ t i⊗∑

j
tn−1− j⊗ t j 7→∑

j
tn−1+i− j⊗ t j . (3.14)

One can now explicitly verify that all relations of figures 7-9 are indeed satisfied.
Given the two-dimensional topological quantum field theory, we can compute topological in-

variants. For example, the two-sphere can be obtained by gluing the cup to the cap, i.e., Z(S2) :K η−→
A ε−→ K. One then finds ε(η(1K)) = ε(1A) = 0. Similarly, by gluing the cup to a one-to-two pair
of pants, whose two out-boundaries we glue in turn to a two-to-one pair of pants, which we finally
cap off with a cap, we find for the torus ε(µ(δ (η(1K)))) = ε(µ(δ (1A))) = ∑ j ε(µ(tn−1− j⊗ t j)) =

∑ j ε(tn−1) = ∑ j 1 = n. This answer could of course have been more easily obtained as the di-
mension of the vector space A. By first computing the gluing of a one-to-two pair of pants to a
two-to-one pair of pants in the form of the linear map A→ A : t i 7→ ntn−1+i, one can easily con-
vince oneself that all higher-genus surfaces have invariant 0.

Example. A TQFT that produces more refined invariants is based on the algebra A =K[t]/(tn−
1), with Frobenius form ε : A→K : 1A 7→ 1K and t i 7→ 0 for i> 0. Indeed, one finds that Z(Σg;0,0) =

ng. This TQFT computes the genus.

4. Schwarz- and Witten-type TQFTs

Let us now develop the Lagrangian/path integral formulation of TQFT. We consider an n-
dimensional, Riemannian manifold M with a metric gµν and a quantum field theory defined on this
space described by the action S. Let us further identify a collection of observables Oα of the theory.
Their correlation functions can be computed via the usual path integral

〈Oα1 Oα2 . . .Oαk〉=
∫

e−SOα1 Oα2 . . .Oαk . (4.1)

The quantum field theory with (selected) observables {Oα} is considered topological if

δ

δgµν

〈Oα1 Oα2 . . .Oαk〉= 0 , ∀k ≥ 0 ,∀αi, i = 1, . . . ,k . (4.2)

In other words, if the correlators of the {Oα} are independent of the metric. Recall that we have
argued before that on metric spaces topological invariants are metric independent.

4.1 Schwarz-type topological quantum field theories

To achieve the metric independence of (4.2), there are two options. The first option is realized
in so-called Schwarz-type topological quantum field theories. These theories have the property that
both the action and the observables are manifestly independent of the metric. Examples include

9
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• BF-theories, whose action is given by S = tr
∫

M B∧F , where F is the Lie algebra-valued two-
form field strength and B is a Lie-algebra valued n−2-form. Metric-independent observables
in this theory are standard Wilson loops trR Pexp

∫
γ

A, where trR denotes the trace in the
representation R of the Lie algebra and γ is a closed one-cycle.

An interesting example of this kind is two-dimensional Yang-Mills theory in the zero area
limit. Let’s put two-dimensional Yang-Mills theory on a surface Σ with metric gµν . The
Yang-Mills action is given by SYM = 1

4e2

∫
Σ

d2x
√

g trF2. Alternatively, it can be written as
SYM = 1

2
∫

Σ

(
i trφF + 1

2 e2 vol(Σ) trφ 2
)
, where vol(Σ) is the volume form. Indeed, upon per-

forming the Gaussian integral over the Lie algebra-valued scalar field φ , we recover the
original action. In the limit where the second term goes to zero, the theory becomes of
the BF-type. If we do keep the second term, the theory does not have full general covari-
ance, but it is invariant under area-preserving diffeomorphisms. One can straightforwardly
develop the Hamiltonian picture of this theory and compute the image of the generators of
two-cobordisms under Z. As the state space is infinite-dimensional, this theory (in the ap-
propriate limit), while very similar, does not quite fit within the framework of axiomatic
topological field theory developed above. An excellent set of lectures on two-dimensional
Yang-Mills theory can be found in, for example, [6].

• Chern-Simons theory, which is described by the action S = tr
∫

M A∧dA+ 2
3 A∧A∧A. Here

M is any three-manifold and A is a gauge field. The theory’s observables are again Wilson
loops. A comprehensive set of lecture notes on Chern-Simons theory can be found in [9].

4.2 Cohomological topological quantum field theories

In these lectures we will focus on the second option, namely cohomological or Witten-type to-
pological field theories. Let us assume that the quantum field theory possesses an infinitesimal
symmetry generator, which we suggestively denote by Q. As Q is a symmetry, we have QS = 0.
Let us further assume that Q is such that the observables are closed QOα = 0 and the stress-energy
tensor is exact, δS

δgµν = 2
√

gTµν = QKµν for some symmetric tensor K.4 Then we can argue as
follows:

δ

δgµν

〈Oα1 Oα2 . . .Oαk〉=−
∫

Oα1 Oα2 . . .Oαk

δS
δgµν

e−S (4.3)

=−
∫

Q
(
Oα1 Oα2 . . .Oαk Kµνe−S) (4.4)

= 0 (4.5)

where we assumed for simplicity that the observables are independent of the metric, but it clearly
suffices that δO

δgµν is exact for the argument to go through. Furthermore, we assumed that the path
integral measure is invariant under Q, i.e., that Q is non-anomalous. Note that it may be the case
that the action is not just closed QS = 0, but also exact S = QΛ. In this case, one can easily argue,
similarly to the argument presented just now, that the correlation functions 〈Oα1 Oα2 . . .Oαk〉 will
be independent of the coupling constant.

4Even though we are already employing cohomological terminology in stating that objects are “closed” or “exact”,
we do not necessarily impose that Q2 = 0.

10
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4.2.1 Topological twisting

If we can find or construct quantum field theories with a symmetry Q satisfying the above pro-
perties, a topological quantum field theory will emerge. A very widely applicable tool to construct
precisely such theories was given in [4], and goes under the name of topological twisting. It can
be employed in various dimensions and with various amounts of supersymmetry, but here we will
focus on the original case of four-dimensional N = 2 super Yang-Mills theory. We start with a
brief reminder of N = 2 supersymmetry.

The N = 2 Poincaré supersymmetry algebra contains eight supercharges organized as QI
α , Q̃α̇I .

Here α, α̇ are the usual SU(2)1× SU(2)2 Lorentz indices, and I is an SU(2)R R-symmetry in-
dex. The total R-symmetry is SU(2)R ×U(1)r. The supercharges Q and Q̃ carry charges −1
and +1 under the abelian factor. In summary, the transformation rules of the supercharges under
SU(1)1×SU(2)2×SU(2)R×U(1)r are

Q : (1
2 ,0,

1
2)
−1 (4.6)

Q̃ : (0, 1
2 ,

1
2)

+1 (4.7)

Their algebra is

{QI
α , Q̃α̇J}= Pαα̇δ

I
J , {QI

α ,Q
J
β
}= εαβ ε

IJZ , {Q̃α̇I, Q̃β̇J}= εαβ εIJZ̄ , (4.8)

where P is the momentum generator and Z the central charge. The latter won’t be important for
our discussion.

Note that, for example, Q1
α , Q̃α̇1 is an N = 1 subalgebra. The N = 2 vector multiplet can be

decomposed in standard N = 1 multiplets as follows:

(N = 2 VM) = (N = 1 VM ⊕ N = 1 χM in adjoint representation) , (4.9)

where VM stands for vector multiplet and χM for chiral multiplet. In total, the field content and
its quantum numbers under SU(1)1×SU(2)2×SU(2)R×U(1)r is thus

bosons: Aµ : (1
2 ,

1
2 ,0)

0 (4.10)

φ , φ̃ : (0,0,0)±2 (4.11)

D(IJ) : (0,0,1)0 (4.12)

fermions: λ I
α , λ̃α̇I : (1

2 ,0,
1
2)

+1⊕ (0, 1
2 ,

1
2)
−1 . (4.13)

Their transformation rules are given by

δAµ = i(ξ I
σµ λ̃I)− i(ξ̃ I

σ̃µλI)

δφ =−i
(
ξ

I
λI
)

δ φ̃ =+i(ξ̃ I
λ̃I)

δλI =
1
2

σ
µν

ξIFµν +2
(
Dµφ

)
σ

µ
ξ̃I +2iξI[φ , φ̃ ]+DIJξ

J

δ λ̃I =
1
2

σ̃
µν

ξ̃IFµν)+2(Dµ φ̃)σ̃ µ
ξI + φ̃ σ̃

µDµξI−2iξ̃I[φ , φ̃ ]+DIJ ξ̃
J

δDIJ =−(ξ̃Iσ̃
µDµλJ)+ i(ξIσ

µDµ λ̃J)−2[φ ,(ξ̃I λ̃J)]+2[φ̃ ,(ξIλJ)]+(I↔ J) .

(4.14)
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Here ξ I
α and ξ̃α̇I are constant supersymmetry parameters. The supersymmetric Yang-Mills action

is given by

SYM =
1

g2
YM

∫
d4x
√

g tr
[

1
2

FµνFµν − 1
2

DIJDIJ−4Dµ φ̃Dµ
φ +4[φ , φ̃ ]2

−2i(λ I
σ

µDµ λ̃I)−2(λ I[φ̃ ,λI])+2(λ̃ I[φ , λ̃I])
]
. (4.15)

With these preparations, we are ready to implement Witten’s topological twisting. The idea is
simply to lock the SU(2)2 and SU(2)R rotations. In other words, henceforth we consider SU(2)′2 =
diag(SU(2)2,SU(2)R). The fields of the vector multiplet have the following transformation rules
under the newly minted SU(2)1×SU(2)′2×U(1)r symmetry group:

bosons: (1
2 ,

1
2)

0 still vector→ Aµ (4.16)

(0,0)±2 still scalars→ φ , φ̄ (4.17)

(0,1)0 self-dual two-form→ D+
µν (4.18)

fermions: (1
2 ,

1
2)

+1 vector→ ψµ (4.19)

(0,1)−1 self-dual two-form→ χ
+
µν (4.20)

(0,0)−1 scalar→ η (4.21)

Here we introduced twisted fields transforming under the novel symmetry group. The supercharges
themselves now transform as

(1
2 ,

1
2)
−1 ⊕ (0,1)+1 ⊕ (0,0)+1 . (4.22)

Note in particular the presence of a scalar supercharge, which we will call Q.
So far, on flat space, we haven’t done anything really: we have just relabeled fields slightly

unconventionally. However, it is an amazing fact that the supercharge Q can be preserved on
any spin-manifold (and in fact, more generally, on any manifold admitting a SpinC structure).
The Lagrangian we ought to consider is simply the covariantized flat-space Lagrangian with a
certain SU(2)R background connection, proportional to the spin-connection, turned on. When
the Lagrangian is written in terms of twisted fields, we don’t have to actively worry about this
background connection: the (spatial) index structure of the twisted fields suggests the proper Levi-
Civita connections in the covariant derivative. Concretely, one finds that the on-shell action (after
some trivial rescalings of fields)

S =
∫

M4

d4x
√

g tr
[

1
4

FµνFµν +
1
2

φDµDµ
φ̄ − iηDµψ

µ + i(Dµψν)χ
µν − i

8
φ [χµν ,χ

µν ]

− i
2

φ̄ [ψµ ,ψ
µ ]− i

2
φ [η ,η ]− 1

8
[φ , φ̄ ]2

]
. (4.23)

is invariant under the transformation rules

δAµ = iεψµ , δφ = 0 , δ φ̄ = 2iεη , δη =
1
2

ε[φ , φ̄ ] , (4.24)

δψµ =−εDµφ , δ χµν = ε(Fµν +
1
2

εµνρσ Fρσ ) . (4.25)
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Note that both the action and the transformation rules of course still respect the U(1)r symmetry.
It is easy to verify that the (on-shell) algebra is given by

[δε ,δε ′ ] = Gauge(ρ)+ equations of motion , (4.26)

where ρ = −2iεε ′φ . Thus, on gauge invariant operators one has Q2 = 0. Having identified a
nilpotent supercharge for a class of quantum field theories we can place on any spin-manifold,
we should still verify that the stress-energy tensor is Q-closed. A somewhat tedious and subtle
computation confirms this fact

Tµν = {Q,Λµν} , for Λµν =
1
2

tr(Fµσ χ
σ

ν + . . .) (4.27)

What’s more, one can also verify that

L ′ = L +
1
4

Fµν F̃µν = {Q,Λ} for Λ =
1
4

trFµν χ
µν + . . . (4.28)

We thus find ourselves in precisely the situation we described before. Hence, the partition function
of the theory on a four-manifold M4 computes a topological invariant of M4, namely Donaldson’s
invariant.

Let us conclude by observing that there are various topological observables. First of all, from
(4.24) we see that Qφ = 0. Hence all gauge-invariant combinations of φ are topological obser-
vables. In particular, for gauge group SU(2), one has W0(P) = 1

2 trφ 2(P) for some point P ∈M4.
Note that

∂

∂xµ
W0 =

1
2

∂

∂xµ
trφ

2 = trφDµφ = i{Q, trφψµ} , (4.29)

so correlation functions of W0 do not depend on their insertion points on M4.
More observables can be constructed via topological descent. We start by rewriting the com-

putation of (4.29) as

0 = i[Q,W0] , dW0 = i{Q,W1} with W1 = tr(φψµ)dxµ . (4.30)

Then we continue by writing

dW1 = i[Q,W2] , dW2 = i{Q,W3} , dW3 = i[Q,W4] , dW4 = 0 , (4.31)

with W2 = tr(1
2 ψ ∧ψ + iφF), W3 = i tr(ψ ∧ F), and W4 = −1

2 trF ∧ F . Given a k-dimensional
homology cycle on M4, we can consider

I(γ) =
∫

γ

Wk , and [Q, I(γ)}=
∫

γ

[Q,Wk}=−i
∫

γ

dWk−1 = 0 , (4.32)

because γ is a homology cycle. Inserting these additional topological observables gives rise to the
higher Donaldson’s invariants.
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