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1. Introduction

Gauge theories are of major importance in physics since they are involved in the fundamental
description of nature. The Standard Model of particle physics and the theory of general relativ-
ity are two examples of gauge theories offering never-equaled observational predictions for our
universe. Furthermore, gauge theories provide a mathematical framework that enables us to under-
stand the deepest foundations of our physical theories.

The study of asymptotic symmetries in gauge theories is an old subject that has recently known
renewed interest. A first direction is motivated by the AdS/CFT correspondence where the asymp-
totic symmetries of the gravity theory in the bulk spacetime correspond to the global symmetries of
the dual quantum field theory through the holographic dictionary [3, 126, 165, 167, 177]. A strong
control on asymptotic symmetries allows us to investigate new interesting holographic dualities. A
second direction is driven by the recently-established connections between asymptotic symmetries,
soft theorems and memory effects [162]. These connections furnish crucial information about the
infrared structure of quantized gauge theories. In gravity, they may be relevant to solve the long-
standing problem of black hole information paradox [101, 102, 105–107].

Several approaches exist regarding asymptotic symmetries in gauge theories and the construc-
tion of associated charges. The aim of these notes is to provide a self-consistent introduction on
how to impose boundary conditions in a generic gauge theory, derive the asymptotic symmetry
algebra, and compute the associated surface charges. We discuss these points in the gauge fixing
approach. Indeed, despite this approach being widely used in the literature, there are few ref-
erences discussing the complete procedure for a general gauge theory. To illustrate the abstract
definitions and relevant results, we discuss in detail the examples of general relativity in asymptot-
ically (locally) (A)dS4 and asymptotically flat spacetimes. These examples are interesting because
they involve all the subtleties of the procedure. The notes aim to be pedagogical and are based on
lectures given at the XV Modave Summer School in Mathematical Physics.

In section 2, we briefly mention the different main frameworks to study asymptotic symmetries
in gauge theories. Thereafter, in section 3, we focus on the gauge fixing approach. We explain the
conditions under which a given gauge fixing is suitable to study asymptotic symmetries. Then, we
discuss how to impose consistent boundary conditions, the associated solution space, and how to
derive the asymptotic symmetry algebra. In section 4, after some digressions through the Noether
procedure to construct charges associated with global symmetries, we explain what the analogue
of this construction for gauge symmetries is. In particular, the Barnich-Brandt prescription is dis-
cussed and related to the covariant phase space methods in the context of diffeomorphism-invariant
theories. In section 5, we review some recent applications of asymptotic symmetries in the con-
text of holography and the infrared sector of gauge theories. Finally, these notes are accompa-
nied by two appendices. Appendix A is a quick summary of the matching between Bondi and
Fefferman-Graham gauges in general relativity. Appendix B contains some important definitions
and conventions about the jet bundles and homotopy operators widely used in the text.

Many reviews related to asymptotic symmetries complementary to these notes exist in the
literature: see, for example, [19, 26, 63, 134, 137, 145, 153, 162].
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2. Definitions of asymptotics

Several frameworks exist to impose boundary conditions in gauge theories. Some of them are
mentioned next.

2.1 Geometric approach

The geometric approach of boundary conditions was initiated by Penrose, who introduced the
techniques of conformal compactification to study general relativity in asymptotically flat space-
times at null infinity [144,146]. According to this perspective, the boundary conditions are defined
by requiring that certain data on a fixed boundary be preserved. The asymptotic symmetry group
G is then defined as the quotient:

G =
Gauge transformation preserving the boundary conditions

Trivial gauge transformations
, (2.1)

where the trivial gauge transformations are the gauge transformations that reduce to the identity
on the boundary. In other words, the asymptotic symmetry group is isomorphic to the group of
gauge transformations induced on the boundary which preserve the given data. This is the weak
definition of the asymptotic symmetry group. A stronger definition of the asymptotic symmetry
group is given by the quotient (2.1), where the trivial gauge transformations are now the gauge
transformations that have associated vanishing charges.

The geometric approach was essentially used in gravity theory and led to much progress in
the study of symmetries and symplectic structures for asymptotically flat spacetimes at null infinity
[6, 7, 83, 103, 114] and spatial infinity [4, 5]. It was also considered to study asymptotically (A)dS
spacetimes [8–11]. Moreover, this framework was recently applied to study boundary conditions
and associated phase spaces on null hypersurfaces [56].

The advantage of this approach is that it is manifestly gauge invariant, since we do not refer to
any particular coordinate system to impose the boundary conditions. Furthermore, the geometric
interpretation of the symmetries is transparent. The weak point is that the definition of boundary
conditions is rigid. It is a non-trivial task to modify a given set of boundary conditions in this frame-
work to highlight new asymptotic symmetries. It is often a posteriori that boundary conditions are
defined in this framework, after having obtained the results in coordinates.

2.2 Gauge fixing approach

A gauge theory has redundant degrees of freedom. The gauge fixing approach consists in using
the gauge freedom of the theory to impose some constraints on the fields. This enables one to quo-
tient the field space to eliminate some of the unphysical or pure gauge redundancies in the theory.
For a given gauge theory, an appropriate gauge fixing (where appropriate will be defined below)
still allows some redundancy. For example, in electrodynamics, the gauge field Aµ transforms as
Aµ → Aµ +∂µα (α is a function of the spacetime coordinates) under a gauge transformation. The
Lorenz gauge is defined by setting ∂µAµ = 0. This gauge can always be reached using the gauge
redundancy, since ∂µ∂ µα = −∂νAν always admits a solution for α , regardless of the exact form
of Aµ . However, residual gauge transformations remain that preserve the Lorenz gauge. These are
given by Aµ → Aµ +∂µβ , where β is a function of the spacetime coordinates satisfying ∂µ∂ µβ = 0
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(see, e.g., [119]). The same phenomenon occurs in general relativity where spacetime diffeomor-
phisms can be performed to reach a particular gauge defined by some conditions imposed on the
metric gµν . Some explicit examples are discussed below.

Then, the boundary conditions are imposed on the fields of the theory written in the chosen
gauge. The weak version of the definition of the asymptotic symmetry group is given by

Gweak =

[
Residual gauge diffeomorphisms
preserving the boundary conditions.

]
(2.2)

Intuitively, the gauge fixing procedure eliminates part of the pure gauge degrees of freedom,
namely, the trivial gauge transformations defined under (2.1). Therefore, fixing the gauge is similar
to taking the quotient as in equation (2.1), and the two definitions of asymptotic symmetry groups
coincide in most of the practical situations. As in the geometric approach, a stronger version of the
asymptotic symmetry group exists and is given by

Gstrong =

[
Residual gauge diffeomorphisms preserving the boundary
conditions with associated non-vanishing charges.

]
(2.3)

Notice that Gstrong ⊆ Gweak
1.

The advantage of the gauge fixing approach is that it is highly flexible to impose boundary
conditions, since we are working with explicit expressions in coordinates. For example, the BMS
group in four dimensions was first discovered in this framework [43, 154, 155]. Furthermore, a
gauge fixing is a local consideration (i.e. it holds in a coordinate patch of the spacetime). There-
fore, the global considerations related to the topology are not directly relevant in this analysis,
thereby allowing further flexibility. For example, as we will discuss in subsection 3.4, this allowed
to consider singular extensions of the BMS group: the Virasoro× Virasoro superrotations [37,38].
These new asymptotic symmetries are well-defined locally; however, they have poles on the celes-
tial sphere. In the geometric approach, one would have to modify the topology of the spacetime
boundary to allow these superrotations by considering some punctured celestial sphere [21, 164].
The weakness of this approach is that it is not manifestly gauge invariant. Hence, even if the gauge
fixing approach is often preferred to unveil new boundary conditions and symmetries, the geomet-
ric approach is complementary and necessary to make the gauge invariance of the results manifest.
In section 3, we study the gauge fixing approach and provide some examples related to gravity in
asymptotically flat and asymptotically (A)dS spacetimes.

2.3 Hamiltonian approach

Some alternative approaches exist that are also powerful in practice. For example, in the
Hamiltonian formalism, asymptotically flat [151] and AdS [47, 110] spacetimes have been studied
at spatial infinity. Furthermore, the global BMS group was recently identified at spatial infinity
using twisted parity conditions [111–113]. In this framework, the computations are done in a co-
ordinate system making the split between space and time explicit, without performing any gauge

1One of the most striking examples of the difference between the weak and the strong definitions of the asymptotic
symmetry group is given by considering Neumann boundary conditions in asymptotically AdSd+1 spacetimes. Indeed,
in this situation, we have Gweak = Diff(R×Sd−1), and Gstrong is trivial [69].
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fixing. Then, the asymptotic symmetry group is defined as the quotient between the gauge trans-
formations preserving the boundary conditions and the trivial gauge transformations, where trivial
means that the associated charges are identically vanishing on the phase space. This definition of
the asymptotic symmetry group corresponds to the strong definition in the two first approaches.

3. Asymptotic symmetries in the gauge fixing approach

We now focus on the aforementioned gauge fixing approach of asymptotic symmetries in
gauge theories. We illustrate the different definitions and concepts using examples, with a spe-
cific focus on asymptotically flat and asymptotically (A)dS spacetimes in four-dimensional general
relativity.

3.1 Gauge fixing procedure

Definition [Gauge symmetry] Let us start with a Lagrangian theory in a n-dimensional spacetime
M

S[Φ] =
∫

M
L[Φ,∂µΦ,∂µ∂νΦ, . . .], (3.1)

where L= Ldnx is the Lagrangian and Φ= (φ i) are the fields of the theory. A gauge transformation
is a transformation acting on the fields, and which depends on parameters F = ( f α) that are taken
to be arbitrary functions of the spacetime coordinates. We write

δFΦ = R[F ]

= Rα f α +Rµ

α∂µ f α +R(µν)
α ∂µ∂ν f α + . . .

= ∑
k≥0

R(µ1...µk)
α ∂µ1 . . .∂µk f α

(3.2)

the infinitesimal gauge transformation of the fields. In this expression, R(µ1...µk)
α are local functions,

namely functions of the coordinates, the fields, and their derivatives. The gauge transformation is
a symmetry of the theory if, under (3.2), the Lagrangian transforms as

δFL = dBF , (3.3)

where BF = Bµ

F(d
n−1x)µ .

Examples We illustrate this definition by providing some examples. First, consider classical
vacuum electrodynamics

S[A] =
∫

M
F∧?F, (3.4)

where F = dA and A is a 1-form. It is straightforward to check that the gauge transformation
δαA = dα , where α is an arbitrary function of the coordinates, is a symmetry of the theory.

Now, consider the general relativity theory

S[g] =
1

16πG

∫
M
(R−2Λ)

√
−gdnx, (3.5)

where R and
√
−g are the scalar curvature and the square root of minus the determinant associated

with the metric gµν respectively, and Λ is the cosmological constant. It can be checked that the
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gauge transformation δξ gµν = Lξ gµν = ξ ρ∂ρgµν + gµρ∂νξ ρ + gρν∂µξ ρ , where ξ µ is a vector
field generating a diffeomorphism, is a symmetry of the theory.

Notice that in these examples, the transformation of the fields (3.2) is of the form

δFΦ = Rα f α +Rµ

α∂µ f α , (3.6)

namely they involve at most first order derivatives of the parameters.

Definition [Gauge fixing] Starting from a Lagrangian theory (3.1) with gauge symmetry (3.2),
the gauge fixing procedure involves imposing some algebraic or differential constraints on the fields
in order to eliminate (part of) the redundancy in the description of the theory. We write

G[Φ] = 0 (3.7)

a generic gauge fixing condition. This gauge has to satisfy two conditions:

• It has to be reachable by a gauge transformation, which means that the number of inde-
pendent conditions in (3.7) is inferior or equal to the number of independent parameters
F = ( f α) generating the gauge transformation.

• It has to use all of the available freedom of the arbitrary functions parametrizing the gauge
transformations to reach the gauge2, which means that the number of independent conditions
in (3.7) is superior or equal to the number of independent parameters F = ( f α) generating
the gauge transformations.

Considering these two requirements together tells us that the number of independent gauge fix-
ing conditions in (3.7) has to be equal to the number of independent gauge parameters F = ( f α)

involved in the fields transformation (3.2).

Examples In electrodynamics, several gauge fixings are commonly used. Let us mention the
Lorenz gauge ∂ µAµ = 0, the Coulomb gauge ∂ iAi = 0, the temporal gauge A0 = 0, and the axial
gauge A3 = 0. As previously discussed, the Lorenz gauge can always be reached by performing a
gauge transformation. We can check that the same statement holds for all the other gauge fixings.
Notice that these gauge fixing conditions involve only one constraint, as there is only one free
parameter α in the gauge transformation.

In gravity, many gauge fixings are also used in practice. For example, the De Donder (or har-
monic) gauge requires that the coordinates xµ be harmonic functions, namely, �xµ = 1√

−g ∂ν(
√
−g∂ νxµ)=

0. Notice that the number of constraints, n, is equal to the number of independent gauge parameters
ξ µ . This gauge condition is suitable for studying gravitational waves in perturbation theory (see,
e.g., [41]).

Another important gauge fixing in configurations where Λ 6= 0 is the Fefferman-Graham gauge
[89,90,139,157,158]. We write the coordinates as xµ = (ρ,xa), where a = 1, . . . ,n−1 and ρ is an

2If the available freedom is not used, we talk about partial gauge fixing. In this configuration, there are still some
arbitrary functions of the coordinates in the parameters of the residual gauge transformations.
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expansion parameter (ρ = 0 is at the spacetime boundary, and ρ > 0 is in the bulk). It is defined by
the following conditions:

gρρ =−(n−1)(n−2)
2Λρ2 , gρa = 0 (3.8)

(n conditions). The coordinate ρ is spacelike for Λ < 0 and timelike for Λ > 0. The most general
metric takes the form

ds2 =−(n−1)(n−2)
2Λ

dρ2

ρ2 +gab(ρ,xc)dxadxb. (3.9)

Finally, the Bondi gauge will be relevant for us in the following [43, 154, 155]. This gauge
fixing is valid for both Λ = 0 and Λ 6= 0 configurations. Writing the coordinates as (u,r,xA), where
xA = (θ1, . . . ,θn−2) are the transverse angular coordinates on the (n−2)-celestial sphere, the Bondi
gauge is defined by the following conditions:

grr = 0, grA = 0, ∂r

(
detgAB

r2(n−2)

)
= 0 (3.10)

(n conditions). These conditions tell us that, geometrically, u labels null hypersurfaces in the
spacetime, xA labels null geodesics inside a null hypersurface, and r is the luminosity distance
along the null geodesics. The most general metric takes the form

ds2 = e2β V
r

du2−2e2β dudr+gAB(dxA−UAdu)(dxB−UBdu) (3.11)

where β , UA and V
r are arbitrary functions of the coordinates, and the (n−2)-dimensional metric

gAB satisfies the determinant condition in the third equation of (3.10). Let us mention that the Bondi
gauge is closely related to the Newman-Unti gauge [29, 135] involving only algebraic conditions:

grr = 0, grA = 0, gru =−1 (3.12)

(n conditions).

Definition [Residual gauge transformation] After having imposed a gauge fixing as in equation
(3.7), there usually remain some residual gauge transformations, namely gauge transformations
preserving the gauge fixing condition. Formally, the residual gauge transformations with generators
F have to satisfy δFG[Φ] = 0. They are local functions parametrized as F = F(a), where the
parameters a are arbitrary functions of (n−1) coordinates.

Examples Consider the Lorenz gauge ∂ µAµ = 0 in electrodynamics. As we discussed earlier, the
residual gauge transformations for the Lorenz gauge are the gauge transformations δαAµ = ∂µα ,
where ∂ µ∂µα = 0.

Similarly, consider the Fefferman-Graham gauge (3.8) in general relativity with Λ 6= 0. The
residual gauge transformations generated by ξ µ have to satisfy Lξ gρρ = 0 and Lξ gρa = 0. The
solutions to these equations are given by

ξ
ρ = σ(xa)ρ, ξ

a = ξ
a
0 (x

b)+
(n−1)(n−2)

2Λ
∂bσ

∫
ρ

0

dρ ′

ρ ′
gab(ρ ′,xc). (3.13)

6
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These solutions are parametrized by n arbitrary functions σ and ξ a
0 of (n−1) coordinates xa.

In the Bondi gauge (3.10), the residual gauge transformations generated by ξ µ have to satisfy
Lξ grr = 0, Lξ grA = 0 and gABLξ gAB = 4ω , where ω is an arbitrary function of (u,xA). The
solutions to these equations are given by

ξ
u = f ,

ξ
A = Y A + IA, IA =−∂B f

∫
∞

r
dr′(e2β gAB),

ξ
r =− r

n−2
(DAY A−2ω +DAIA−∂B fUB +

1
2

f g−1
∂ug),

(3.14)

where ∂r f = 0 = ∂rY A, and g = det(gAB) [30]. The covariant derivative DA is associated with
the (n−2)-dimensional metric gAB. The residual gauge transformations are parametrized by the n
functions ω , f and Y A of (n−1) coordinates (u,xA).

3.2 Boundary conditions

Definition [Boundary conditions] Once a gauge condition (3.7) has been fixed, we can impose
boundary conditions for the theory by requiering some constraints on the fields in a neighbourhood
of a given spacetime region. Most of those boundary conditions are fall-off conditions on the fields
in the considered asymptotic region3, or conditions on the leading functions in the expansion. This
choice of boundary conditions is motivated by the physical model that we want to consider. A set
of boundary conditions is usually considered to be interesting if it provides non-trivial asymptotic
symmetry group and solution space, exhibiting interesting properties for the associated charges
(finite, generically non-vanishing, integrable and conserved; see below). If the boundary conditions
are too strong, the asymptotic symmetry group will be trivial, with vanishing surface charges.
Furthermore, the solution space will not contain any solution of interest. If they are too weak,
the associated surface charges will be divergent. Consistent and interesting boundary conditions
should therefore be located between these two extreme situations.

Examples Let us give some examples of boundary conditions in general relativity theory. Many
examples of boundary conditions for other gauge theories can be found in the literature (see e.g.
[2, 30, 55, 75, 109, 124, 160]).

Let us consider the Bondi gauge defined in equation (3.10) in dimension n ≥ 3. There exist
several definitions of asymptotic flatness at null infinity (r→ ∞) in the literature. For all of them,
we require the following preliminary boundary conditions on the functions of the metric (3.11) in
the asymptotic region r→ ∞:

β = o(1),
V
r
= o(r2), UA = o(1), gAB = r2qAB + rCAB +DAB +O(r−1), (3.15)

where qAB, CAB and DAB are (n−2)-dimensional symmetric tensors, which are functions of (u,xA).
Notice in particular that qAB is kept free at this stage.

3Notice that the asymptotic region could be taken not only at (spacelike, null or timelike) infinity, but also in other
spacetime regions, such as near a black hole horizon [77–79, 81, 99, 101, 102, 106, 107].
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A first definition of asymptotic flatness at null infinity (AF1) is a sub-case of (3.15). In addi-
tion to all these fall-off conditions, we require the transverse boundary metric qAB to have a fixed
determinant, namely,

√
q =
√

q̄, (3.16)

where q̄ is a fixed volume element (which may possibly depend on time) on the (n−2)-dimensional
transverse space [51, 52, 65, 94].

A second definition of asymptotic flatness at null infinity (AF2) is another sub-case of the def-
inition (3.15). All the conditions are the same, except that we require that the transverse boundary
metric qAB be conformally related to the unit (n−2)-sphere metric, namely,

qAB = e2ϕ q̊AB, (3.17)

where q̊AB is the unit (n−2)-sphere metric [36]. Note that for n = 4, this condition can always be
reached by a coordinate transformation, since every metric on a two dimensional surface is confor-
mally flat (but even in this case, as we will see below, this restricts the form of the symmetries).

A third definition of asymptotic flatness at null infinity (AF3), which is the historical one
[43, 154, 155], is a sub-case of the second definition (3.17). We require (3.15) and we demand that
the transverse boundary metric qAB be the unit (n−2)-sphere metric, namely,

qAB = q̊AB. (3.18)

Note that this definition of asymptotic flatness is the only one that has the property to be asymptot-
ically Minkowskian, that is, for r→∞, the leading orders of the spacetime metric (3.11) tend to the
Minkowski line element ds2 =−du2−2dudr+ r2q̊ABdxAdxB.

Let us now present several definitions of asymptotically (A)dS spacetimes in both the Fef-
ferman Graham gauge (3.8) and Bondi gauge (3.10). A preliminary boundary condition, usually
called the asymptotically locally (A)dS condition, requires the following conditions on the func-
tions of the Fefferman-Graham metric (3.9):

gab = O(ρ−2) (3.19)

or, equivalently, gab = ρ−2g(0)ab +o(ρ−2). Notice that the (n−1)-dimensional boundary metric g(0)ab
is kept free in this preliminary set of boundary conditions, thus justifying the adjective “locally"
[130]. In the Bondi gauge, as we will see below, these fall-off conditions are equivalent to demand
that

gAB = O(r2) (3.20)

or, equivalently, gAB = r2qAB +o(r2).
A first definition of asymptotically (A)dS spacetime (AAdS1) is a sub-case of the definition

(3.19). In addition to these fall-off conditions, we demand the following constraints on the (n−1)-
dimensional boundary metric g(0)ab :

g(0)tt =
2Λ

(n−1)(n−2)
, g(0)tA = 0, det(g(0)ab ) =

2Λ

(n−1)(n−2)
q̄, (3.21)

8
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where q̄ is a fixed volume form for the transverse (n−2)-dimensional space (which may possibly
depend on t) [66]. In the Bondi gauge, the boundary conditions (3.21) translate into

β = o(1),
V
r
=

2r2Λ

(n−1)(n−2)
+o(r2), UA = o(1),

√
q =
√

q̄. (3.22)

Notice the similarity of these conditions to the definition (AF1) (equations (3.15) and (3.16)) of
asymptotically flat spacetime.

A second definition of asymptotically AdS spacetime4 (AAdS2) is a sub-case of the definition
(3.19). We require the same conditions as in the preliminary boundary condition (3.19), except
that we demand that the (n−1)-dimensional boundary metric g(0)ab be fixed [110]. These conditions
are called Dirichlet boundary conditions. One usually chooses the cylinder metric as the boundary
metric, namely,

g(0)ab dxadxb =
2Λ

(n−1)(n−2)
dt2 + q̊ABdxAdxB, (3.23)

where q̊AB are the components of the unit (n−2)-sphere metric (as in the Bondi gauge, the upper
case indices A,B, . . . run from 3 to n, and xa = (t,xA)). In the Bondi gauge, the boundary conditions
(3.23) translate into

β = o(1),
V
r
=

2r2Λ

(n−1)(n−2)
+o(r2), UA = o(1), qAB = q̊AB. (3.24)

Notice the similarity of these conditions to the definition (AF3) (equations (3.15) and (3.18)) of
asymptotically flat spacetime.

As we see it, the Bondi gauge is well-adapted for each type of asymptotics (see figure 1), while
the Fefferman-Graham gauge is only defined in asymptotically (A)dS spacetimes.

I 0
AdSI 0

AdS

i+AdS

i−AdS

u
=

Cstu
=

Cst

i0 i0

i+

i−

I +

I − I −

I +

u
=

Cstu
=

Cst

N
or

th
po

le

South
pole

Cosmological horizon

u
=

Cst

I +
dS

I −
dS

AdS case (Λ < 0). Flat case (Λ = 0). dS case (Λ > 0).

Figure 1: Bondi gauge for any Λ.

4This choice is less relevant for asymptotically dS spacetimes, since it strongly restricts the Cauchy problem and
the bulk spacetime dynamics [9, 10].
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3.3 Solution space

Definition [Solution space] Given a gauge fixing (3.7) and boundary conditions, a solution of
the theory is a field configuration Φ̃ satisfying G[Φ̃] = 0, the boundary conditions, and the Euler
Lagrange-equations

δL
δΦ

∣∣∣∣
Φ̃

= 0, (3.25)

where the Euler-Lagrange derivative is defined in equation (B.5). The set of all solutions of the
theory is called the solution space. It is parametrized as Φ̃ = Φ̃(b), where the parameters b are
arbitrary functions of (n−1) coordinates.

Examples We now provide some examples of solution spaces of four-dimensional general rela-
tivity in different gauge fixings. We first consider the Fefferman-Graham gauge in asymptotically
(A)dS4 spacetimes with preliminary boundary conditions (3.19). Solving the Einstein equations

Gµν +Λgµν = 0, (3.26)

we obtain the following analytic fall-offs:

gab = ρ
−2g(0)ab +ρ

−1g(1)ab +g(2)ab +ρg(3)ab +O(ρ2), (3.27)

where g(i)ab are functions of xa [89, 90, 139, 157, 158]. The only free data in this expansion are
g(0)ab and g(3)ab . All the other coefficients are determined in terms of these free data. Following the
holographic dictionary, we call g(0)ab the boundary metric and we define

Tab =

√
3|Λ|

16πG
g(3)ab (3.28)

as the stress energy tensor. From the Einstein equations, we have

g(0)ab T ab = 0, D(0)
a T ab = 0, (3.29)

where D(0)
a is the covariant derivative with respect to g(0)ab . In summary, the solution space of

general relativity in the Fefferman-Graham gauge with the preliminary boundary condition (3.19)
is parametrized by the set of functions

{g(0)ab ,Tab}Λ6=0, (3.30)

where Tab satisfies (3.29) (11 functions).
Now, for the restricted set of boundary conditions (3.21), that is, (AAdS1), the solution space

reduces to
{g(0)AB ,Tab}Λ6=0, (3.31)

where g(0)AB has a fixed determinant and Tab satisfies (3.29) (7 functions). Finally, for Dirichlet
boundary conditions (3.23) (AAdS2), the solution space reduces to

{Tab}Λ6=0, (3.32)

10
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where Tab satisfies (3.29) (5 functions).
Let us now consider the Bondi gauge in asymptotically (A)dS4 spacetimes with preliminary

boundary condition (3.20). From the Fefferman-Graham theorem and the gauge matching between
Bondi and Fefferman-Graham that is described in appendix A (see also [66, 149]), we know that
the functions appearing in the metric admit an analytic expansion in powers of r. In particular, we
can write

gAB = r2qAB + rCAB +DAB +
1
r

EAB +
1
r2 FAB +O(r−3), (3.33)

where qAB, CAB, DAB, EAB, FAB, . . . are functions of (u,xA). The determinant condition defining the
Bondi gauge and appearing in the third equation of (3.10) implies gAB∂rgAB = 4/r, which imposes
successively that det(gAB) = r4 det(qAB), qABCAB = 0 and

DAB =
1
4

qABCCDCCD +DAB(u,xC),

EAB =
1
2

qABDCDCCD +EAB(u,xC),

FAB =
1
2

qAB

[
CCDECD +

1
2
DCDDCD−

1
32

(CCDCCD)
2
]
+FAB(u,xC),

(3.34)

with qABDAB = qABEAB = qABFAB = 0 (indices are lowered and raised with the metric qAB and its
inverse). We now sketch the results obtained by solving the Einstein equations

Gµν +Λgµν = 0 (3.35)

for Λ 6= 0 (we follow [66, 149]; see also [127] for the Newman-Penrose version). The component
(rr) gives the following radial constraints on the Bondi functions:

β (u,r,xA) = β0(u,xA)+
1
r2

[
− 1

32
CABCAB

]
+

1
r3

[
− 1

12
CABDAB

]
(3.36)

+
1
r4

[
− 3

32
CABEAB−

1
16

DABDAB +
1

128
(CABCAB)

2
]
+O(r−5).

where β0(u,xA) is an arbitrary function. The component (rA) yields

UA =UA
0 (u,x

B)+
(1)

UA(u,xB)
1
r
+

(2)

UA(u,xB)
1
r2

+
(3)

UA(u,xB)
1
r3 +

(L3)

UA(u,xB)
lnr
r3 +o(r−3)

(3.37)

with

(1)

UA(u,xB) = 2e2β0∂
A
β0,

(2)

UA(u,xB) = −e2β0
[
CAB

∂Bβ0 +
1
2

DBCAB
]
,

(3)

UA(u,xB) = −2
3

e2β0
[
NA− 1

2
CABDCCBC +(∂Bβ0−

1
3

DB)D
AB− 3

16
CCDCCD

∂
A
β0

]
,

(L3)

UA(u,xB) = −2
3

e2β0DBDAB. (3.38)

11



P
o
S
(
M
o
d
a
v
e
2
0
1
9
)
0
0
3

Asymptotic Symmetries in gauge theories Romain Ruzziconi

In these expressions, UA
0 (u,x

B) and NA(u,xB) are arbitrary functions. We call NA the angular
momentum aspect. Notice that, at this stage, logarithmic terms are appearing in the expansion
(3.37). However, we will see below that these terms vanish for Λ 6= 0. The component (ru) leads
to

V
r
=

Λ

3
e2β0r2− r(l +DAUA

0 ) (3.39)

− e2β0
[1

2

(
R[q]+

Λ

8
CABCAB

)
+2DA∂

A
β0 +4∂Aβ0∂

A
β0

]
− 2M

r
+o(r−1),

where l = ∂u ln
√

q, R[q] is the scalar curvature associated with the metric qAB and M(u,xA) is an
arbitrary function called the Bondi mass aspect. Afterwards, we solve the components (AB) of the
Einstein equations order by order, thereby providing us with the constraints imposed on each order
of gAB. The leading order O(r−1) of that equation yields to

Λ

3
CAB = e−2β0

[
(∂u− l)qAB +2D(AU0

B)−DCU0
CqAB

]
. (3.40)

Going to O(r−2), we get
Λ

3
DAB = 0, (3.41)

which removes the logarithmic term in (3.37) for Λ 6= 0 (but not for Λ = 0). The condition at the
next order O(r−3)

∂uDAB +UC
0 DCDAB +2DC(ADB)U

C
0 = 0 (3.42)

is trivial for Λ 6= 0. Using an iterative argument as in [149], we now make the following observa-
tion. If we decompose gAB = r2

∑n≥0 g(n)ABr−n, we see that the iterative solution of the components
(AB) of the Einstein equations organizes itself as Λg(n)AB = ∂ug(n−1)

AB +(...) at order O(r−n), n ∈ N0.
Accordingly, the form of EAB should have been fixed by the equation found at O(r−3); however,
this is not the case, since both contributions of EAB cancel between GAB and ΛgAB. Moreover, the
equation Λg(4)AB = ∂ug(3)AB +(...) at the next order turns out to be a constraint for g(4)AB ∼FAB, deter-
mined with other subleading data such as CAB or ∂ug(3)AB ∼ ∂uEAB. It shows that EAB is a set of two
free data on the boundary, built up from two arbitrary functions of (u,xA). Morover, it indicates that
no more data exist to be uncovered for Λ 6= 0. Finally, the components (uu) and (uA) of the Ein-
stein equations give some evolution constraints with respect to the u coordinate for the Bondi mass
aspect M and the angular momentum aspect NA. We will not describe these equations explicitly
here (see [66, 149]).

In summary, the solution space for general relativity in the Bondi gauge with the preliminary
boundary condition (3.33) and Λ 6= 0 is parametrized by the set of functions

{β0,UA
0 ,qAB,EAB,M,NA}Λ6=0 (3.43)

(11 functions), where M and NA have constrained evolutions with respect to the u coordinate.
Therefore, the characteristic initial value problem is well-defined when the following data are
given: β0(u,xC), UA

0 (u,x
C), EAB(u,xC), qAB(u,xC), M(u0,xC) and NA(u0,xC), where u0 is a fixed

value of u.

12
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Notice that for the boundary conditions (3.22) (AAdS1), the solution space reduces to

{qAB,EAB,M,NA}Λ 6=0, (3.44)

where M and NA have constrained evolutions with respect to the u coordinate, and qAB has a fixed
determinant [66] (7 functions). Finally, for the Dirichlet boundary conditions (3.24) (AAdS2), the
solution space finally reduces to

{EAB,M,NA}Λ 6=0, (3.45)

where M and NA have constrained evolutions with respect to the u coordinate (5 functions).
Let us finally discuss the Bondi gauge in asymptotically flat spacetimes [36,43,65,66,93,154,

155]. We first consider the preliminary boundary conditions (3.15). From the previous analysis of
solution space with Λ 6= 0, we can readily obtain the solution space with Λ = 0, that is, the solution
of

Gµν = 0, (3.46)

by taking the flat limit Λ→ 0. The radial constraints (3.36), (3.38) and (3.39) are still valid by
setting to zero β0, UA

0 (see equation (3.15)) and all the terms proportional to Λ. Furthermore, by
the same procedure, the constraint equation (3.40) becomes

(∂u− l)qAB = 0. (3.47)

Therefore, the asymptotic shear CAB becomes unconstrained, and the metric qAB gets a time evo-
lution constraint. Similarly, the equation (3.41) becomes trivial and DAB is not constrained at this
order. In particular, this allows for the existence of logarithmic terms in the Bondi expansion (see
equation (3.37)). One has to impose the additional condition DADAB = 0 to make these logarithmic
terms disappear. Finally, one can see that for Λ = 0, the subleading orders of the components (AB)
of the Einstein equations impose time evolution constraints on DAB, EAB, . . . , but this infinite tower
of functions is otherwise unconstrained and they become free parameters of the solution space.
Finally, as for the case Λ 6= 0, the components (uu) and (uA) of the Einstein equations yield time
evolution constraints for the Bondi mass aspect M and the angular momentum aspect NA.

In summary, the solution space for general relativity in the Bondi gauge with the preliminary
boundary condition (3.15) is parametrized by the set of functions

{qAB,CAB,M,NA,DAB,EAB,FAB, . . .}Λ=0, (3.48)

where qAB, M, NA, DAB, EAB, FAB, . . . have constrained time evolutions (infinite tower of inde-
pendent functions). Therefore, the characteristic initial value problem is well-defined when the
following data are given: CAB(u,cC), qAB(u0,xC), M(u0,xC), NA(u0,xC), DAB(u0,xC), EAB(u0,xC),
FAB(u0,xC), . . . where u0 is a fixed value of u. Notice a subtle point here: by taking the flat
limit of the solution space with Λ 6= 0, we assumed that gAB is analytic in r and can be ex-
panded as (3.33) (this condition was not restrictive for Λ 6= 0). This condition is slightly more
restrictive than (3.15) where analyticity is assumed only up to order r−1. Therefore, by this
flat limit procedure, we only obtain a subsector of the most general solution space. Writing
gAB(u,r,xC) = r2qAB(u,xC)+ rCAB(u,xC)+DAB(u,xC)+ ẼAB(u,r,xC), where ẼAB is a function of
all the coordinates of order O(r−1) in r, the most general solution space can be written as

{qAB,CAB,M,NA,DAB, ẼAB}Λ=0, (3.49)

13
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where ẼAB is the trace-free part of ẼAB, and qAB, M, NA, DAB, ẼAB obey time evolution constraints.
Now, the characteristic initial value problem is well-defined when the following data are given:
CAB(u,cC), qAB(u0,xC), M(u0,xC), NA(u0,xC), DAB(u0,xC) and ẼAB(u0,r,xC).

We complete this set of examples by mentioning the restricted solution spaces in the different
definitions of asymptotic flatness introduced above. For boundary conditions (AF1) (equations
(3.15) with (3.16)), we obtain

{qAB,CAB,M,NA,DAB, ẼAB}Λ=0, (3.50)

where qAB, M, NA, DAB and ẼAB obey time evolution constraints, and
√

q is fixed. In particular, if
we choose a branch where

√
q is time-independent, from (3.47), we immediately see that ∂uqAB =

05. For boundary conditions (AF2) (equations (3.15) with (3.17)), the solution space reduces to

{ϕ,CAB,M,NA,DAB, ẼAB}Λ=0, (3.51)

where M, NA, DAB and ẼAB obey time evolution equations. Notice that the metric qAB of the form
(3.17) automatically satisfies (3.47). This agrees with results of [36]. Finally, taking the boundary
conditions (AF3) (equations (3.15) with (3.18)) yields the solution space

{CAB,M,NA,DAB, ẼAB}Λ=0, (3.52)

where M, NA, DAB and ẼAB obey time evolution equations. This agrees with the historical results
of [43, 154, 155].

3.4 Asymptotic symmetry algebra

Definition [Asymptotic symmetry] Given boundary conditions imposed in a chosen gauge, the
asymptotic symmetries are defined as the residual gauge transformations preserving the boundary
conditions6. In other words, the asymptotic symmetries considered on-shell are the gauge transfor-
mations R[F ] tangent to the solution space. In practice, the requirement to preserve the boundary
conditions gives some constraints on the functions parametrizing the residual gauge transforma-
tions. In gravity, the generators of asymptotic symmetries are often called asymptotic Killing vec-
tors.

Definition [Asymptotic symmetry algebra] Once the asymptotic symmetries are known, we have

[R[F1],R[F2]] = δF1R[F2]−δF2R[F1]

≈ R[[F1,F2]A],
(3.53)

where ≈ means that this equality holds on-shell, i.e. on the solution space. In this expression, the
bracket [F1,F2]A of gauge symmetry generators is given by

[F1,F2]A =C(F1,F2)−δF1F2 +δF2F1, (3.54)

5The condition ∂uqAB = 0 was assumed for technical reasons in [51, 52, 65], but this was actually not restrictive.
6This is the weak definition of asymptotic symmetry, in the sense of (2.2).
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where C(F1,F2) is a skew-symmetric bi-differential operator [21, 26]

C(F1,F2) = ∑
k,l≥0

C(µ1···µk)(ν1···νl)
[αβ ] ∂µ1 . . .∂µk f α

1 ∂ν1 . . .∂νl f β

2 . (3.55)

The presence of the terms −δF1F2 + δF2F1 in (3.53) is due to the possible field-dependence of the
asymptotic symmetry generators. We can verify that (3.54) satisfies the Jacobi identity, i.e. the
asymptotic symmetry generators form a (solution space-dependent) Lie algebra for this bracket. It
is called the asymptotic symmetry algebra. The statement (3.53) means that the infinitesimal action
of the gauge symmetries on the fields forms a representation of the Lie algebra of asymptotic sym-
metry generators: [δF1 ,δF2 ]Φ = δ[F1,F2]Φ. Let us mention that a Lie algebroid structure is showing
up at this stage [21, 21, 72]. The base manifold is given by the solution space, the field-dependent
Lie algebra is the Lie algebra of asymptotic symmetry generators introduced above and the anchor
is the map F → R[F ].

Examples Let us start by considering asymptotically AdS4 spacetimes in the Fefferman-Graham
and Bondi gauge. The preliminary boundary condition (3.19) does not impose any constraint on the
generators of the residual gauge diffeomorphisms of the Fefferman-Graham gauge given in (3.13).
Similarly, the generators of the residual gauge diffeomorphisms in Bondi gauge given in (3.14) do
not get further constraints with (3.20).

Now, let us consider the boundary conditions (AAdS1) (equation (3.19) together with (3.21))
in the Fefferman-Graham gauge. The asymptotic symmetries are generated by the vectors fields
ξ µ given in (3.13) preserving the boundary conditions, namely, satisfying Lξ g(0)tt = 0, Lξ g(0)tA = 0

and gab
(0)Lξ g(0)ab = 0. This leads to the following constraints on the parameters:(

∂u−
1
2

l
)

ξ
t
0 =

1
2

D(0)
A ξ

A
0 , ∂uξ

A
0 =−Λ

3
gAB
(0)∂Bξ

t
0, σ =

1
2
(D(0)

A ξ
A
0 +ξ

t
0l), (3.56)

where l = ∂u ln
√

q̄. In this case, the Lie bracket (3.54) is given by

[ξ1,ξ2]A = Lξ1ξ2−δξ1ξ2 +δξ2ξ1 (3.57)

and is referred as the modified Lie bracket [36]. Therefore, the asymptotic symmetry algebra can
be worked out and is given explicitly by [ξ (ξ t

0,1,ξ
A
0,1),ξ (ξ

t
0,2,ξ

A
0,2)]A = ξ (ξ̂ t

0, ξ̂
A
0 ), where

ξ̂
t
0 = ξ

A
0,1∂Aξ

t
0,2 +

1
2

ξ
t
0,1D(0)

A ξ
A
0,2−δ

ξ (ξ t
0,1,ξ

A
0,1)

ξ
t
0,2− (1↔ 2),

ξ̂
A
0 = ξ

B
0,1∂Bξ

A
0,2−

Λ

3
ξ

t
0,1gAB

(0)∂Bξ
t
0,2−δ

ξ (ξ t
0,1,ξ

A
0,1)

ξ
A
0,2− (1↔ 2).

(3.58)

In the Bondi gauge with corresponding boundary conditions (3.22), the constraints on the parame-
ters are given by (

∂u−
1
2

l
)

f =
1
2

DAY A, ∂uY A =−Λ

3
qAB

∂B f , ω = 0 (3.59)

and the asymptotic symmetry algebra is written as [ξ ( f1,Y A
1 ),ξ ( f2,Y A

2 )]A = ξ ( f̂ ,Ŷ A) where

f̂ = Y A
1 ∂A f2 +

1
2

f1DAY A
2 −δ

ξ ( f1,Y A
1 ) f2− (1↔ 2),

Ŷ A = Y B
1 ∂BY A

2 −
Λ

3
f1qAB

∂B f2−δ
ξ ( f1,Y A

1 )Y
A
2 − (1↔ 2).

(3.60)
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This asymptotic symmetry algebra is infinite-dimensional (in particular, it contains the area-preserving
diffeomorphisms as a subgroup) and field-dependent, and it is called the Λ-BMS4 algebra [66]. The
parameters f are called the supertranslation generators, while the parameters Y A are called the su-
perrotation generators. These names will be justified below when studying the flat limit of this
asymptotic symmetry algebra Λ-BMS4. The computation of the modified Lie bracket (3.57) in the
Bondi gauge for these boundary conditions7 follows closely [36].

Let us consider the Fefferman-Graham gauge with Dirichlet boundary conditions
(AAdS2), that is, (3.19) together with (3.23). Compared to the above situation, the equations (3.56)
reduce to

∂uξ
t
0 =

1
2

D(0)
A ξ

A
0 , ∂uY A =−Λ

3
q̊AB
(0)∂Bξ

t
0, σ =

1
2

D(0)
A ξ

A
0 , (3.61)

where D(0)
A is the covariant derivative associated with the fixed unit sphere metric q̊AB. Furthermore,

there is an additional constraint: Lξ g(0)AB = o(ρ−2), which indicates that ξ A
0 is a conformal Killing

vector of q̊AB, namely,
D(0)

A ξ
0
B +D(0)

B ξ
0
A = D(0)

C ξ
C
0 q̊AB. (3.62)

The asymptotic symmetry algebra remains of the same form as (3.58). In the Bondi gauge, Dirichlet
boundary conditions are given by (3.20) together with (3.24). The equations (3.59) become

∂u f =
1
2

DAY A, ∂uY A =−Λ

3
q̊AB

∂Bξ
t
0, ω = 0, (3.63)

where DA is the covariant derivative with respect to q̊AB, while the additional constraint Lξ gAB =

o(r2) gives
DAYB +DBYA = DCYCq̊AB. (3.64)

This means that Y A is a conformal Killing vector of q̊AB. The asymptotic symmetry algebra (3.60)
remains of the same form. It can be shown that the asymptotic symmetry algebra corresponds to
SO(3,2) algebra for Λ < 0 and SO(1,4) algebra for Λ > 0 [30] (see also Appendix A of [66]).
Therefore, we see how the infinite-dimensional asymptotic symmetry algebra Λ-BMS4 reduces to
these finite-dimensional algebras, which are the symmetry algebras of global AdS4 and global dS4,
respectively.

Let us now consider asymptotically flat spacetimes in the Bondi gauge. The asymptotic Killing
vectors can be derived in a similar way to that in the previous examples. Another way in which
to proceed is to take the flat limit of the previous results obtained in the Bondi gauge. We sketch
the expressions obtained by following these two equivalent procedures. First, consider the pre-
liminary boundary conditions (3.15). The asymptotic Killing vectors ξ µ are the residual gauge
diffeomorphisms (3.14) with the following constraints on the parameters:(

∂u−
1
2

l
)

f =
1
2

DAY A−ω, ∂uY A = 0, (3.65)

where l = ∂u ln
√

q. These equations can be readily solved and the solutions are given by

f = q
1
4

[
T (xA)+

1
2

∫ u

0
du′[q−

1
4 (DAY A−2ω)]

]
, Y A = Y A(xB), (3.66)

7This completes the results obtained in [66] where the asymptotic symmetry algebra was obtained by pullback
methods.
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where T are called supertranslation generators and Y A superrotation generators. Notice that there is
no additional constraint on Y A at this stage. Computing the modified Lie bracket (3.57), we obtain
[ξ ( f1,Y A

1 ,ω1),ξ ( f2,Y A
2 ,ω2)]A = ξ ( f̂ ,Ŷ A, ω̂) where

f̂ = Y A
1 ∂A f2 +

1
2

f1DAY A
2 − (1↔ 2),

Ŷ A = Y B
1 ∂BY A

2 − (1↔ 2),

ω̂ = 0.

(3.67)

Now, we discuss the two relevant sub-cases of boundary conditions in asymptotically flat
spacetimes. Adding the condition (3.16) to the preliminary condition (3.15), i.e. considering (AF1),
gives the additional constraint

ω = 0 (3.68)

Note that this case corresponds exactly to the flat limit of the (AAdS1) case (equations (3.19) and
(3.21)). The asymptotic symmetry algebra reduces to the semi-direct product

Diff(S2)nS , (3.69)

where Diff(S2) are the smooth superrotations generated by Y A and S are the smooth supertransla-
tions generated by T . This extension of the original global BMS4 algebra (see below) is called the
generalized BMS4 algebra [51, 52, 65, 94]. Therefore, the Λ-BMS4 algebra reduces in the flat limit
to the smooth extension (3.69) of the BMS4 algebra.

The other sub-case of boundary conditions for asymptotically flat spacetimes (AF2) is given
by adding condition (3.17) to the preliminary boundary condition (3.15). The additional constraint
on the parameters is now given by

DAYB +DBYA = DCYCq̊AB, (3.70)

i.e. Y A is a conformal Killing vector of the unit round sphere metric q̊AB. If we allow Y A to not be
globally well-defined on the 2-sphere, then the asymptotic symmetry algebra has the structure

(Vir×VirnS ∗)×R. (3.71)

Here, Vir×Vir is the direct product of two copies of the Witt algebra, parametrized by Y A. Fur-
thermore, S ∗ are the supertranslations, parametrized by T , and R are the abelian Weyl rescalings
of q̊AB, parametrized by ω . Note that the supetranslations also contain singular elements since they
are related to the singular superrotations through the algebra (3.67). This extension of the global
BMS4 algebra is called the extended BMS4 algebra [36]. Finally, as a sub-case of this one, con-
sidering the more restrictive constraints (3.18), i.e. (AF3), and allowing only globally well-defined
Y A, we recover the global BMS4 algebra [43, 154, 155], which is given by

SO(3,1)nS , (3.72)

where S are the supertranslations and SO(3,1) is the algebra of the globally well-defined confor-
mal Killing vectors of the unit 2-sphere metric, which is isomorphic to the proper orthocronous
Lorentz group in four dimensions.
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Definition [Action on the solution space] Given boundary conditions imposed in a chosen gauge,
there is a natural action of the asymptotic symmetry algebra, with generators F = F(a), on the
solution space Φ̃ = Φ̃(b). The form of this action can be deduced from (3.2) by inserting the
solution space and the explicit form of the asymptotic symmetry generators8.

Examples In the Fefferman-Graham gauge with Dirichlet boundary conditions for asymptoti-
cally AdS4 spacetimes (AAdS2) ((3.19) with (3.23)), the asymptotic symmetry algebra SO(3,2)
acts on the solution space (3.32) as

δξ c
0
Tab =

(
Lξ c

0
+

1
3

D(0)
c ξ

c
0

)
Tab. (3.73)

In the Bondi gauge with definition (AF3) ((3.15) with (3.18)) of asymptotically flat spacetime, the
global BMS4 algebra acts on the leading functions of the solution space (3.52) as

δ( f ,Y )CAB = [ f ∂u +LY −
1
2

DCYC]CAB−2DADB f + q̊ABDCDC f ,

δ( f ,Y )M = [ f ∂u +LY +
3
2

DCYC]M+
1
4

NABDADB f +
1
2

DA f DBNAB +
1
8

DCDBDAY ACBC,

δ( f ,Y )NA = [ f ∂u +LY +DCYC]NA +3MDA f − 3
16

DA f NBCCBC +
1
2

DB f NBCCAC

− 1
32

DADBY BCCDCCD +
1
4
(2DB f +DBDCDC f )CAB

− 3
4

DB f (DBDCCAC−DADCCBC)+
3
8

DA(DCDB fCBC)

+
1
2
(DADB f − 1

2
DCDC f q̊AB)DCCBC,

where NAB = ∂uCAB [36]. For the action of the associated asymptotic symmetry group on these
solution spaces, see [35].

4. Surface charges

In this section, we review how to construct the surface charges associated with gauge sym-
metries. After recalling some results about global symmetries and Noether currents, the Barnich-
Brandt prescription to obtain the surface charges in the context of asymptotic symmetries is dis-
cussed. We illustrate this construction with the example of general relativity with asymptotically
(A)dS and asymptotically flat spacetimes. The relation between this prescription and the covariant
phase space methods is established.

4.1 Global symmetries and Noether’s first theorem

Definition [Global symmetry] Let us consider a Lagrangian theory with Lagrangian density
L[Φ,∂µΦ, . . .] and a transformation δQΦ = Q of the fields, where Q is a local function. In agree-
ment with the above definition (3.3), this transformation is said to be a symmetry of the theory
if

δQL = dBQ, (4.1)
8This action is usually not linear. However, in three-dimensional general relativity, this action is precisely the

coadjoint representation of the asymptotic symmetry algebra [27, 28, 33, 34, 138].
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where BQ = Bµ

Q(d
n−1x)µ . Then, as defined in (3.2), a gauge symmetry is just a symmetry that de-

pends on arbitrary spacetime functions F = ( f α), i.e. Q = R[F ]. We define an on-shell equivalence
relation ∼ between the symmetries of the theory as

Q∼ Q+R[F ], (4.2)

i.e. two symmetries are equivalent if they differ, on-shell, by a gauge transformation R[F ]. The
equivalence classes [Q] for this equivalence relation are called the global symmetries. In particular,
a gauge symmetry is a trivial global symmetry.

Definition [Noether current] A conserved current j is an on-shell closed (n−1)-form, i.e. dj≈ 0.
We define an on-shell equivalence relation ∼ between the currents as

j∼ j+dK, (4.3)

where K is a (n− 2)-form. A Noether current is an equivalence class [j] for this equivalence
relation.

Theorem [Noether’s first theorem] A one-to-one correspondence exists between global symme-
tries Q and Noether currents [j], which can be written as

[Q]
1-1←→ [j]. (4.4)

In particular, Noether currents associated with gauge symmetries are trivial. Recent demonstrations
of this theorem can for example be found in [22, 26].

Remark This theorem also enables us to construct explicit representatives of the Noether current
for a given global symmetry. We have

δQL = dBQ = (∂µBµ

Q)d
nx. (4.5)

Furthermore, writing L = Ldnx, we obtain

δQL = δQΦ
∂L
∂Φ

+δQ∂µΦ
∂L

∂ (∂µΦ)
+ . . .

= Q
∂L
∂Φ

+∂µQ
∂L

∂ (∂µΦ)
+ . . .

= Q
(

∂L
∂Φ
−∂µ

∂L
∂ (∂µΦ)

+ . . .

)
+∂µ

(
Q

∂L
∂ (∂µΦ)

+ . . .

)
= Q

δL
δΦ

+∂µ

(
Q

∂L
∂ (∂µΦ)

+ . . .

)
,

(4.6)

where, in the second line, we used
[δQ,∂µ ] = 0 (4.7)

and, in the last equality, we used (B.5). Putting (4.5) and (4.6) together, we obtain

Q
δL
δΦ

= ∂µ

(
Bµ

Q−Q
∂L

∂ (∂µΦ)
+ . . .

)
≡ ∂µ jµ

Q (4.8)
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or, equivalently

Q
δL
δΦ

= djQ, (4.9)

where jQ = jµ

Q(d
n−1x)µ . In particular, djQ ≈ 0 holds on-shell. Hence, we have obtained a represen-

tative of the Noether current associated with the global symmetry Q through the correspondence
(4.4).

Theorem [Noether representation theorem] Defining the bracket as

{jQ1 , jQ2}= δQ1jQ2 , (4.10)

we have
{jQ1 , jQ2} ≈ j[Q1,Q2] (4.11)

(n > 1), where [Q1,Q2] = δQ1Q2−δQ2Q1. In other words, the Noether currents form a representa-
tion of the symmetries.

To prove this theorem, we apply δQ1 on the left-hand side and the right-hand side of (4.9),
where Q is replaced by Q2. On the right-hand side, using the first equation of (B.8), we obtain

δQ1djQ2 ≈ dδQ1jQ2 . (4.12)

On the left-hand side, we have

δQ1

(
Q2

δL
δΦ

)
= δQ1Q2

δL
δΦ

+Q2δQ1

δL
δΦ

= δQ1Q2
δL
δΦ

+Q2
δ

δΦ
(δQ1L)−Q2 ∑

k≥0
(−1)k

∂µ1 . . .∂µk

(
∂Q1

∂Φµ1...µk

δL
δΦ

)
= δQ1Q2

δL
δΦ
−Q2 ∑

k≥0
(−1)k

∂µ1 . . .∂µk

(
∂Q1

∂Φµ1...µk

δL
δΦ

)
,

(4.13)

where, to obtain the second equality, we used (B.9). In the last equality, we used (4.1) together
with (B.6). Now, using Leibniz rules in the second term of the right-hand side, we get

δQ1

(
Q2

δL
δΦ

)
= δQ1Q2

δL
δΦ
−∑

k≥0
∂µ1 . . .∂µk Q2

(
∂Q1

∂Φµ1...µk

δL
δΦ

)
+∂µT µ

Q1

(
Q2,

δL
δΦ

)
dnx

= (δQ1Q2−δQ2Q1)
δL
δΦ

+∂µT µ

Q1

(
Q2,

δL
δΦ

)
dnx

= [Q1,Q2]
δL
δΦ

+∂µT µ

Q1

(
Q2,

δL
δΦ

)
dnx

= dj[Q1,Q2]+dTQ1

(
Q2,

δL
δΦ

)
,

(4.14)

where T µ

Q1

(
Q2,

δL
δΦ

)
is an expression vanishing on-shell. In the second equality, we used (B.7), and

in the last equality, we used (4.9). Putting (4.12) and (4.14) together results in

d
[

δQ1jQ2− j[Q1,Q2]−TQ1

(
Q2,

δL
δΦ

)]
= 0. (4.15)
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We know from Poincaré lemma that locally, every closed form is exact9. However, this cannot
be the case in Lagrangian field theories. In fact, this would imply that every n-form is exact,
and therefore, there would not be any possibility of non-trivial dynamics. Let us remark that the
operator d that we are using is not the standard exterior derivative, but a horizontal derivative in the
jet bundle (see definition (B.3)) that takes into account the field-dependence. In this context, we
have to use the algebraic Poincaré lemma.

Lemma [Algebraic Poincaré lemma] The cohomology class H p(d) for the operator d defined in
(B.3) is given by

H p(d) =


[αn] if p = n
0 if 0 < p < n
R if p = 0

(4.16)

where [αn] designates the equivalence classes of n-forms for the equivalence relation αn ∼ α ′n if
αn = α ′n +dβ

n−1 [26].
Le us go back to the proof of (4.11). Applying the algebraic Poincaré lemma to (4.15) yields

δQ1jQ2 = j[Q1,Q2]+TQ1

(
Q2,

δL
δΦ

)
+dη , (4.17)

where η is a (n− 2)-form. Therefore, on-shell, since TQ1

(
Q2,

δL
δΦ

)
≈ 0 and because Noether

currents are defined up to exact (n−1)-forms, we obtain the result (4.11). Notice that in classical
mechanics (i.e. n = 1), from (4.16), constant central extensions may appear in the current algebra.

Definition [Noether charge] Given a Noether current [j], we can construct a Noether charge by
integrating it on a (n−1)-dimensional spacelike surface Σ, with boundary ∂Σ, as

HQ[Φ] =
∫

Σ

j. (4.18)

If we assume that the currents and their ambiguities vanish at infinity, this definition does not
depend on the representative of the Noether current. Indeed,

H ′Q[Φ] =
∫

Σ

(j+dK) = HQ[Φ]+
∫

∂Σ

K, (4.19)

where we used the Stokes theorem. Since
∫

∂Σ
K = 0, we have H ′Q[Φ] = HQ[Φ].

Remark [Conservation and algebra of Noether charges] The Noether charge (4.18) is conserved
in time, that is,

d
dt

HQ[Φ]≈ 0. (4.20)

9The Poincaré lemma states that in a star-shaped open subset, the de Rham cohomology class H p
dR is given by

H p
dR =

{
0 if 0 < p≤ n
R if p = 0

.
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In fact, consider two spacelike hypersurfaces Σ1 ≡ t1 = 0 and Σ2 ≡ t2 = 0. We have

Ht2
Q [Φ]−Ht1

Q [Φ] =
∫

Σ2

jQ−
∫

Σ1

jQ =
∫

Σ2−Σ1

djQ ≈ 0, (4.21)

where Σ2−Σ1 is the spacetime volume encompassed between Σ1 and Σ2. In the second equality,
we used the hypothesis that currents vanish at infinity and the Stokes theorem.

The Noether charges (4.18) form a representation of the algebra of global symmetries, i.e.

{HQ1 ,HQ2} ≈ H[Q1,Q2], (4.22)

where the bracket of Noether charges is defined as

{HQ1 ,HQ2}= δQ1HQ2 =
∫

Σ

δQ1jQ2 . (4.23)

This is a direct consequence of (4.11).

4.2 Gauge symmetries and lower degree conservation law

Definition [Noether identities] Consider the relation (4.9) for a gauge symmetry:

R[F ]
δL
δΦ

= ∂µ jµ

F . (4.24)

The left-hand side can be worked out as

R[F ]
δL
δΦ

=
(

Rα f α +Rµ

α∂µ f α +R(µν)
α ∂µ∂ν f α + . . .

)
δL
δΦ

= f α

[
Rα

δL
δΦ
−∂µ

(
Rµ

α

δL
δΦ

)
+∂µ∂ν

(
R(µν)

α

δL
δΦ

)
+ . . .

]
+∂µ

[
Rµ

α f α δL
δΦ
− f α

∂ν

(
R(µν)

α

δL
δΦ

)
+ . . .

]
︸ ︷︷ ︸

≡Sµ

F

.

(4.25)

Therefore, the equation (4.24) can be rewritten as

f αR†
α

(
δL
δΦ

)
= ∂µ( jµ

F −Sµ

F), (4.26)

where R†
α

(
δL
δΦ

)
= Rα

δL
δΦ
−∂µ

(
Rµ

α
δL
δΦ

)
+∂µ∂ν

(
R(µν)

α
δL
δΦ

)
+ . . . Since F is a set of arbitrary func-

tions, we can apply the Euler-Lagrange derivative (B.5) with respect to f α on this equation. Since
the right-hand side is a total derivative, it vanishes under the action of the Euler-Lagrange derivative
(see (B.6)) and we obtain

R†
α

(
δL
δΦ

)
= 0. (4.27)

This identity is called a Noether identity. There is one identity for each independent generator f α .
Notice that these identities are satisfied off-shell.
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Theorem [Noether’s second theorem] We have

R[F ]
δL
δΦ

= dSF

[
δL
δΦ

]
, (4.28)

where SF = Sµ

F(d
n−1x)µ is the weakly vanishing Noether current (i.e. SF ≈ 0) that was defined in

the last line of (4.25). This is a direct consequence of (4.25), taking the Noether identity (4.27) into
account.

Example Consider the theory of general relativity L = (16πG)−1(R−2Λ)
√
−gdnx. The Euler-

Lagrange derivative of the Lagrangian is given by

δL
δgµν

=−(16πG)−1(Gµν +gµν
Λ)
√
−gdnx. (4.29)

The Noether identity associated with the diffeomorphism generated by ξ µ is obtained by following
the lines of (4.25):

(16πG)δξ gµν

δL
δgµν

=−2∇µξν(Gµν +gµν
Λ)
√
−gdnx

= 2ξν∇µGµν
√
−gdnx−∂µ [2ξν(Gµν +gµν

Λ)
√
−g]dnx.

(4.30)

Therefore, the Noether identity is the Bianchi identity for the Einstein tensor

∇µGµν = 0 (4.31)

and the weakly vanishing Noether current of Noether’s second theorem (4.28) is given by

Sξ =−
√
−g

8πG
ξν(Gµν +gµν

Λ)(dn−1x)µ . (4.32)

Remark From (4.24) and (4.28), we have d(jF−SF) = 0, and hence, from the algebraic Poincaré
lemma (4.16),

jF = SF +dKF , (4.33)

where KF is a (n− 2)-form. Therefore, as already stated in Noether’s first theorem (4.4), the
Noether current associated with a gauge symmetry is trivial, i.e. vanishing on-shell, up to an exact
(n−1)-form. A natural question arises at this stage: is it possible to define a notion of conserved
quantity for gauge symmetries? Naively, following the definition (4.18), one may propose the
following definition for conserved charge:

HF =
∫

Σ

jF ≈
∫

∂Σ

KF (4.34)

where, in the second equality, we used (4.33) and Stokes’ theorem. This charge will be conserved
on-shell since djF ≈ 0. The problem is that the (n−2)-form KF appearing in (4.34) is completely
arbitrary. Indeed, the Noether currents are equivalence classes of currents (see equation (4.3)).
Therefore, we have to find an appropriate procedure to isolate a particular KF .
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Definition [Reducibility parameter] Reducibility parameters F̄ are parameters of gauge transfor-
mations satisfying

R[F̄ ]≈ 0. (4.35)

Two reducibility parameters F̄ and F̄ ′ are said to be equivalent, i.e. F̄ ∼ F̄ ′, if F̄ ≈ F̄ ′. Note that
for a large class of gauge theories (including electrodynamics, Yang-Mills and general relativity in
dimensions superior or equal to three [22,26]), these equivalence classes of asymptotic reducibility
parameters are determined by field-independent ordinary functions F̄(x) satisfying the off-shell
condition

R[F̄ ] = 0. (4.36)

We will call them exact reducibility parameters.

Theorem [Generalized Noether’s theorem] A one-to-one correspondence exists between equiv-
alence classes of reducibility parameters and equivalence classes of on-shell conserved (n− 2)-
forms [K], which can be written as

[F̄ ]
1-1←→ [K]. (4.37)

In this statement, two conserved (n−2)-forms K and K′ are said to be equivalent, i.e. K ∼ K′, if
K≈K′+dl where l is a (n−3)-form [23, 24].

Remark The Barnich-Brandt procedure allows for the construction of explicit representatives of
the conserved (n− 2)-forms for given exact reducibility parameters F̄ [18, 22]. From Noether’s
second theorem (4.28) and (4.36), we have

dSF̄ = 0. (4.38)

From the algebraic Poincaré Lemma (4.16), we get10

−dKF̄ = SF̄ ≈ 0. (4.39)

Using the homotopy operator (B.16), we define

kF̄ [Φ;δΦ] =−In−1
δΦ

SF̄ . (4.40)

This kF̄ [Φ;δΦ] is an element of Ωn−2,1 (see appendix B) and is defined up to an exact (n−2)-form.
This enables us to find an explicit expression for the conserved (n−2)-form KF̄ [Φ] as

KF̄ [Φ] =
∫

γ

kF̄ [Φ;δΦ], (4.41)

where γ is a path on the solution space relating Φ̄ such that SF̄ [Φ̄] = 0 to the solution Φ of interest.
Applying the operator d on (4.41) gives back (4.39), using the property (B.18) of the homotopy
operator. Notice that the expression (4.41) of KF̄ [Φ] generically depends on the chosen path γ .
Therefore, in practice, we consider the (n−2)-form kF̄ [Φ;δΦ] defined in (4.40) as the fundamental
object, rather than KF̄ [Φ].

10The minus sign on the left-hand side of (4.39) is a matter of convention.
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Example Let us return to our example of general relativity. The exact reducibility parameters of
the theory are the diffeomorphism generators ξ̄ , which satisfy

δ
ξ̄
gµν = L

ξ̄
gµν = 0, (4.42)

i.e. they are the Killing vectors of gµν . Note that for a generic metric, this equation does not admit
any solution. Hence, the previous construction is irrelevant for this general case. Now, consider
linearized general relativity around a background gµν = ḡµν +hµν . We can show that

δ
ξ̄
hµν = L

ξ̄
ḡµν = 0, (4.43)

i.e. the exact reducibility parameters of the linearized theory are the Killing vectors of the back-
ground ḡµν . If ḡµν is taken to be the Minkowski metric, then the solutions of (4.43) are the gen-
erators of the Poincaré transformations. The (n−2)-form (4.41) can be constructed explicitly and
integrated on a (n−2)-sphere at infinity. This gives the ADM charges of linearized gravity [22].

4.3 Asymptotic symmetries and surface charges

We now come to the case of main interest, where we are dealing with asymptotic symmetries
in the sense of the definition in subsection 3.4. The prescription to construct the (n− 2)-form
kF [Φ,δΦ] associated with generators of asymptotic symmetries F is essentially the same as the
one introduced above for exact reducibility parameters. However, this (n− 2)-form will not be
conserved on-shell. Indeed, for a generic asymptotic symmetry, (4.38) does not hold; therefore, the
weak equality in (4.39) is not valid anymore. Nonetheless, as we will see below, we still have a
control on the breaking in the conservation law.

Definition [Barnich-Brandt (n−2)-form for asymptotic symmetries] The (n−2)-form kF asso-
ciated with asymptotic symmetries generated by F is defined as

kF [Φ;δΦ] =−In−1
δΦ

SF , (4.44)

where In−1
δΦ

is the homotopy operator (B.16) and SF is the weakly vanishing Noether current defined
in the last line of (4.25). For a first order gauge theory, namely a gauge theory involving only first
order derivatives of the gauge parameters F = ( f α) in the gauge transformations as in (3.6) and
first order equations of motion for the fields Φ = (φ i), the (n−2)-form (4.44) becomes

kF [Φ;δΦ] =−1
2

δΦ
∂

∂ (∂µΦ)

(
∂

∂dxµ
SF

)
, (4.45)

where

SF = Rµ

α f α δL
δΦ

(dn−1x)µ . (4.46)

The simplicity of these expressions motivates the study of first order formulations of gauge theories
in this context [31, 32, 95].
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Example Let us consider the theory of general relativity. Applying the homotopy operator on the
weakly vanishing Noether current Sξ obtained in equation (4.32), we deduce the explicit expression

kξ [g;h] =
√
−g

8πG
(dn−2x)µν [ξ

ν
∇

µh+ξ
µ

∇σ hσν +ξσ ∇
νhσ µ

+
1
2
(h∇

ν
ξ

µ +hµσ
∇σ ξ

ν +hνσ
∇

µ
ξσ )],

(4.47)

where hµν = δgµν . Indices are lowered and raised by gµν and its inverse, and h = hµ
µ [22]. Notice

that this expression has also been derived in the first order Cartan formulation of general relativity
in [31] (see also [32]).

Theorem [Conservation law] Define the invariant presymplectic current as

W[Φ;δΦ,δΦ] =
1
2

In
δΦ

(
δΦ

δL
δΦ

)
. (4.48)

We have the following conservation law

dkF [Φ;δΦ]≈W[Φ;R[F ],δΦ], (4.49)

where, in the equality ≈, it is implied that Φ is a solution of the Euler-Lagrange equations and
δΦ is a solution of the linearized Euler-Lagrange equations. Furthermore, we use the notation
W[Φ;R[F ],δΦ] = iR[F ]W[Φ;δΦ,δΦ].

The proof of this proposition involves the properties of the operators introduced in appendix
B. We have

dkF [Φ;δΦ] =−dIn−1
δΦ

SF

= δSF − In
δΦ

dSF

≈−In
δΦ

dSF

≈−In
δΦ

(
R[F ]

δL
δΦ

)
≈ 1

2
iR[F ]I

n
δΦ

(
δΦ

δL
δΦ

)
≈ iR[F ]W[Φ;δΦ,δΦ]

≈W[Φ;R[F ],δΦ].

(4.50)

In the second equality, we used (B.18). In the third equality, we used the fact that δSF ≈ 0, since δΦ

is a solution of the linearized Euler-Lagrange equations. In the fourth equality, we used Noether’s
second theorem (4.28). In the fifth equality, we used

iR[F ]W[Φ;δΦ,δΦ] = In
R[F ]

(
δΦ

δL
δΦ

)
=−In

δΦ

(
R[F ]

δL
δΦ

)
. (4.51)

The proof of this statement can be found in appendix A.5 of [25]. Finally, in the sixth equality, we
used the definition (4.48).
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Definition [Surface charges] Let Σ be a (n−1)-surface and ∂Σ its (n−2)-dimensional boundary.
We define the infinitesimal surface charge δ/HF [Φ] as

δ/HF [Φ] =
∫

∂Σ

kF [Φ;δΦ]≈
∫

Σ

W[Φ;R[F ],δΦ]. (4.52)

The infinitesimal surface charge δ/HF [Φ] is said to be integrable if it is δ -exact, i.e. if
δ/HF [Φ] = δHF [Φ]. The symbol δ/ in (4.52) emphasizes that the infinitesimal surface charge is not
necessarily integrable. If it is actually integrable, then we can define the integrated surface charge
HF [Φ] as

HF [Φ] =
∫

γ

δHF [Φ]+N[Φ̄] =
∫

γ

∫
∂Σ

kF [Φ;δΦ]+N[Φ̄], (4.53)

where γ is a path in the solution space, going from a reference solution Φ̄ to the solution Φ. N[Φ̄]

is a chosen value of the charge for this reference solution, which is not fixed by the formalism.
Notice that for integrable infinitesimal charge, the integrated charge HF [Φ] is independent from the
chosen path γ [63].

Theorem [Charge representation theorem] Assuming integrability, the integrated surface charges
satisfy the algebra

{HF1 ,HF2} ≈ H[F1,F2]A +KF1;F2 [Φ̄]. (4.54)

In this expression, the integrated charges bracket is defined as

{HF1 ,HF2}= δF2HF1 =
∫

∂Σ

kF1 [Φ;δF2Φ]. (4.55)

Furthermore, the central extension KF1;F2 [Φ̄], which depends only on the reference solution Φ̄,
is antisymmetric with respect to F1 and F2, i.e. KF1;F2 [Φ̄] = KF2;F1 [Φ̄]. It satisfies the 2-cocycle
condition

K[F1,F2]A;F3 [Φ̄]+K[F2,F3]A;F1 [Φ̄]+K[F3,F1]A;F2 [Φ̄]≈ 0. (4.56)

Therefore, the integrated charges form a representation of the asymptotic symmetry algebra, up to
a central extension [22, 25].

For the proof of this theorem, see e.g. section 1.4 of [63].

Remark In the literature, there are several criteria based on properties of the surface charges, that
make a choice of boundary conditions interesting. The main properties are the following:

• The charges are usually required to be finite. Two types of divergences may occur: di-
vergences in the expansion parameter defining asymptotics, say r, and divergences when
performing the integration on the (n−2)-surface ∂Σ.

• The charges have to be integrable. As explained above, this criterion enables us to define in-
tegrated surface charges as in (4.53). Integrability implies that the charges form a representa-
tion of the asymptotic symmetry algebra, up to a central extension (see (4.54)). Furthermore,
the integrated charges generate the symmetries on the solution space.
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• The charges have to be generically non-vanishing. Indeed, since the integrated surface
charges generate the symmetry, identically vanishing charges would imply trivial action on
the solution space. In particular, the asymptotic symmetries for which associated integrated
charges identically vanish are considered as trivial in the strong definition of asymptotic
symmetry group (2.3).

• The charges have to be conserved in time when the integration is performed on a spacelike
(n−2)-dimensional surface ∂Σ at infinity. This statement is not guaranteed a priori because
of the breaking in the conservation law (4.49).

However, even if these requirements seem reasonable, in practice, some of them may not
be satisfied. Indeed, as we will see below, the BMS charges in four dimensions are not always
finite, neither integrable, nor conserved [39]. We now discuss the violation of some of the above
requirements:

• The fact that the charges may not be finite in terms of the expansion parameter r can be
expected when the asymptotic region is taken to be at infinity. Indeed, consider r as a cut-
off. It makes sense to integrate on a surface ∂Σ at a constant finite value of r, encircling a
finite volume. Then, taking the limit r→∞ leads to an infinite volume; therefore, it does not
come as a surprise that quantities diverge. Furthermore, it has recently been shown in [97]
that subleading orders in r in the (n−2)-form kF [Φ;δΦ] contain some interesting physical
information, such as the 10 conserved Newman-Penrose charges [133]. Therefore, it seems
reasonable to think that overleading orders in r may also contain relevant information (see
e.g. [64, 70]).

• The non-integrability of the charges may be circumvented by different procedures to isolate
an integrable part in the expression of the charges (see e.g. [172] and [65]). However, the
final integrated surface charges obtained by these procedures do not have all the properties
that integrable charges would have. In particular, the representation theorem does not gener-
ically hold. Another philosophy is to keep working with non-integrable expressions, without
making any specific choice for the integrable part of the charges. In some situations, it is
still possible to define a modified bracket for the charges, leading to a representation of the
asymptotic symmetry algebra, up to a 2-cocycle which may depend on fields [39, 65]. How-
ever, no general representation theorem exists in this context, even if some progress has been
made [170].

• Finally, the non-conservation of the charges contains some important information on the
physics. For example, in asymptotically flat spacetimes at null infinity, the non-conservation
in time of the charges associated with time translations is known as the Bondi mass loss.
This tells us that the mass decreases in time at future null infinity because of a flux of radi-
ation through the boundary. Hence, the non-conservation of the charges contains important
information on the dynamics of the system.

Even if the charges have these pathologies, they still offer important insights on the system. They
could be seen as interesting combinations of the elements of the solution space that enjoy some
properties in their transformation (see e.g. [34, 35]).
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Examples We now provide explicit examples of surface charge constructions in four-dimensional
general relativity. First, consider asymptotically AdS4 spacetimes with Dirichlet boundary condi-
tions (AAdS2) (condition (3.19) together with (3.23)), the associated solution derived in subsection
3.3 (equation (3.32)), and the associated asymptotic Killing vectors derived in subsection 3.4. In-
serting this solution space and these asymptotic Killing vectors into the (n−2)-form (4.47) results
in an integrable expression at order ρ0. Therefore, we can construct an integrated surface charge
(4.53) where the 2-surface ∂Σ is taken to be the 2-sphere at infinity, written S∞. We have the explicit
expression

Hξ [g] =
∫

S∞

d2
Ω (ξ a

0 Ta
t), (4.57)

where d2Ω is the integration measure on the 2-sphere (see e.g. [69]). These charges are finite and
generically non-vanishing. Furthermore, we can easily show that they are conserved in time, i.e.

d
dt

Hξ [g]≈ 0. (4.58)

Now, we consider definition (3.15) with (3.18) of asymptotically flat spacetimes in four di-
mensions (AF3). The surface charges are obtained by inserting the corresponding solution space
derived in subsection 3.3 (see equation (3.52)) and the asymptotic Killing vectors discussed in
subsection 3.4 into the expression (4.47), and then integrating over S∞. The result is given by

δ/Hξ [g;δg]≈ δJξ [g]+Θξ [g;δg], (4.59)

where

Jξ [g] =
1

16πG

∫
S∞

d2
Ω

[
4 f M+Y A(2NA +

1
16

∂A(CCBCCB))

]
Θξ [g;δg] =

1
16πG

∫
S∞

d2
Ω

[
f
2

NABδCAB
] (4.60)

and where NAB = ∂uCAB [39]. As mentioned above, the infinitesimal surface charges are not inte-
grable. Therefore, we cannot unambiguously define an integrated surface charge as in (4.53) (see,
however, [65, 172]). In particular, the representation theorem (4.54) does not hold. Nevertheless,
we can define the following modified bracket [39]:

{Jξ1 ,Jξ2}
∗ = δξ2Jξ1 [g]+Θξ2 [g;δξ1g]. (4.61)

We can show that
{Jξ1 ,Jξ2}

∗ ≈ J[ξ1,ξ2]A [g]+Kξ1;ξ2 [g], (4.62)

where Kξ1;ξ2 [g] is a field-dependent 2-cocycle given explicitly by11

Kξ1;ξ2 [g] =
1

32πG

∫
S∞

d2
Ω [CBC( f1DBDCDAY A

2 − f2DBDCDAY A
1 )]. (4.63)

11Notice that this 2-cocycle is zero for globally well-defined conformal transformations on the 2-sphere. It becomes
non-trivial when considering the extended BMS4 group with Vir × Vir superrotations.

29



P
o
S
(
M
o
d
a
v
e
2
0
1
9
)
0
0
3

Asymptotic Symmetries in gauge theories Romain Ruzziconi

It satisfies the generalized 2-cocycle condition

K[ξ1,ξ2]A,ξ3 +δξ3Kξ1,ξ2 + cyclic (1,2,3)≈ 0. (4.64)

For the algebra (4.62) to make sense, its form should not depend on the particular choice of inte-
grable part Jξ [g] in (4.60). In particular, defining J′ = J−N and Θ′ = Θ+δN for some N = Nξ [g],
we obtain

{J′
ξ1
,J′

ξ2
}∗ = J′[ξ1,ξ2]A

[g]+K′
ξ1;ξ2

[g], (4.65)

where {J′
ξ1
,J′

ξ2
}∗ = δξ2J′

ξ1
[g]+Θ′

ξ2
[g;δξ1g] and

K′
ξ1;ξ2

= Kξ1,ξ2−δξ2Nξ1 +δξ1Nξ2 +N[ξ1,ξ2]A . (4.66)

Notice that −δξ2Nξ1 +δξ1Nξ2 +N[ξ1,ξ2]A automatically satisfies the generalized 2-cocycle condition
(4.64) [39]. Another property of the surface charges (4.59) and (4.60) is that they are not conserved.
Indeed,

d
du

δ/Hξ [g] =
∫

S∞

W[g;δξ g,δg], (4.67)

where W[g;δg,δg] was computed12 in [65]. We have

∫
S∞

W[g;δg,δg] =− 1
32πG

∫
S∞

d2
Ω [δNAB∧δCAB]. (4.68)

Notice that taking f = 1 and Y A = 0 in (4.67), we recover the famous Bondi mass loss formula
[43, 154, 155]. This formula indicates that the mass is decreasing in time because of the leak of
radiation through I +. This was a striking argument for the existence of gravitational waves at
the non-linear level of the theory. Finally, despite the BMS charges (4.59) and (4.60) not being
divergent in r, we can show that some of the supertranslation charges diverge for the Kerr solution
[39].

Remark A non-trivial relation seems to exist between conservation and integrability of the sur-
face charges. For example, in the case of Dirichlet boundary conditions in asymptotically AdS4

spacetimes (AAdS2) considered above, we see that the surface charges are both integrable and
conserved. Reciprocally, there is a relation between non-conservation and non-integrability of the
surface charges. For example, in the asymptotically flat case (AF3), we see that the source of non-
integrability is contained in the asymptotic shear CAB and the news function NAB = ∂uCAB. These are
precisely the functions involved in the right-hand side of (4.68). We can consider many other exam-
ples where this phenomenon appears. Therefore, non-integrability is related to non-conservation
of the charges. We will see below that for diffeomorphism-invariant theories, the relation between
non-conservation and integrability is transparent in the covariant phase space formalism.

12More precisely, in [65], we computed the presymplectic potential ω[g;δg,δg] introduced below. However, as we
will see, this is equal to the invariant presymplectic current in the Bondi gauge.
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4.4 Relation between Barnich-Brandt and Iyer-Wald procedures

In this subsection, we briefly discuss the covariant phase space formalism leading to the Iyer-
Wald prescription for surface charges [104, 117, 171, 172]. Notice that this method is valid only
for diffeomorphism-invariant theories (including general relativity), and not for any gauge theo-
ries. In practice, this means that the parameters of the asymptotic symmetries are diffeomorphisms
generators, i.e. F ≡ ξ and δFΦ≡Lξ Φ. Finally, we relate this prescription to the Barnich-Brandt
prescription presented in detail in the previous section.

Definition [Presymplectic form] Consider a diffeomorphism-invariant theory with Lagrangian
L = Ldnx. Let us perform an arbitrary variation of the Lagrangian. Using a similar procedure as in
(4.6), we obtain

δL = δΦ
∂L
∂Φ

+δ∂µΦ
∂L

∂ (∂µΦ)
+ . . .

= δΦ
δL
δΦ

+∂µ

(
δΦ

∂L
∂ (∂µΦ)

+ . . .

)
= δΦ

δL
δΦ

+∂µθ
µ [Φ;δΦ],

(4.69)

where

θ [Φ;δΦ] = θ
µ [Φ;δΦ](dn−1x)µ =

(
δΦ

∂L
∂ (∂µΦ)

+ . . .

)
(dn−1x)µ = In

δΦ
L (4.70)

is the presymplectic potential. Taking into account that δ is Grassmann odd, the equation (4.69)
can be rewritten as

δL = δΦ
δL
δΦ
−dθ [Φ;δΦ]. (4.71)

Now, the presymplectic form ω is defined as

ω[Φ;δΦ,δΦ] = δθ [Φ,δΦ]. (4.72)

Definition [Iyer-Wald (n−2)-form for asymptotic symmetries] The Iyer-Wald (n−2)-form kIW
ξ

associated with asymptotic symmetries generated by ξ is defined as

kIW
ξ
[Φ;δΦ] =−δQξ [Φ]+ ιξ θ [Φ;δΦ], (4.73)

up to an exact (n−2)-form13. In this expression, Qξ [Φ] =−In−1
ξ

θ [Φ;Lξ Φ] is called the Noether-
Wald surface charge.

Example For general relativity theory, the presymplectic potential (4.70) is given by

θ [g;h] =
√
−g

16πG
(∇νhµν −∇

µh)(dn−1x)µ , (4.74)

13In the definition (4.73), we assumed that the variational operator δ in front of the Noether-Wald charge does not see
the possible field-dependence of the asymptotic Killing vectors ξ µ . Strictly speaking, one should write kIW

ξ
[Φ;δΦ] =

−δQξ [Φ]+Qδξ [Φ]− ιξ θ [Φ;δΦ].
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where hµν = δgµν . Indices are lowered and raised by gµν and its inverse, and h = hµ
µ . From this

expression, the Noether-Wald charge can be computed; we obtain

Qξ [g] =−In−1
ξ

θ [g;Lξ g] =
√
−g

8πG
∇

µ
ξ

ν(dn−2x)µν (4.75)

and we recognize the Komar charge. Finally, inserting these expression into (4.73) yields

kIW
ξ
[g;h] =

√
−g

8πG

(
ξ

µ
∇σ hνσ −ξ

µ
∇

νh+ξσ ∇
νhµσ +

1
2

h∇
ν
ξ

µ −hρν
∇ρξ

µ

)
(dn−2x)µν . (4.76)

Theorem [Conservation law] We have the following conservation law:

dkIW
ξ
[Φ;δΦ]≈ ω[Φ;Lξ Φ,δΦ], (4.77)

where, in the equality ≈, it is implied that Φ is a solution of the Euler-Lagrange equations and
δΦ is a solution of the linearized Euler-Lagrange equations. Furthermore, ω[Φ;Lξ Φ,δΦ] =

iLξ Φω[Φ;δΦ,δΦ] =−ω[Φ;δΦ,Lξ Φ].
This can be proved using Noether’s second theorem (4.28) (see e.g. [63] for a detailed proof).

Remark In the covariant phase space formalism, the relation between non-integrability and non-
conservation mentioned in the previous subsection is clear. Indeed,

δδ/Hξ [Φ] =
∫

∂Σ

δkIW
ξ
[Φ,δΦ]

=
∫

∂Σ

διξ θ [g,δg]

=
∫

∂Σ

−ιξ δθ [g,δg]

=
∫

∂Σ

−ιξ ω[g;δg,δg],

(4.78)

where we used (4.73) and (4.72) in the second and the fourth equality, respectively. The surface
charge δ/Hξ [Φ] is integrable only if δδ/Hξ [Φ] = 0, if and only if∫

∂Σ

ιξ ω[g;δg,δg] = 0 (4.79)

Therefore, from
dδ/Hξ [Φ] =

∫
∂Σ

dkIW
ξ
[g,δg]≈

∫
∂Σ

ω[Φ;Lξ Φ,δΦ], (4.80)

the non-conservation is controlled by ω[g,δg,δg] and is an obstruction for the integrability.

Remark As in the Barnich-Brandt procedure, the Iyer-Wald (n− 2)-form (4.73) is defined up
to an exact (n− 2)-form. However, there is another source of ambiguity here coming from the
definition of the presymplectic potential (4.70). In fact, we have the freedom to shift θ by an exact
(n−1)-form as

θ [Φ;δΦ]→ θ [Φ;δΦ]−dY[Φ;δΦ], (4.81)

where Y[Φ;δΦ] is a (n−2)-form. This implies that the presymplectic form (4.72) is modified as

ω[Φ;δΦ,δΦ]→ ω[Φ;δΦ,δΦ]+dδY[Φ;δΦ], (4.82)
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where we used the fact that both d and δ are Grassmann odd. The Noether-Wald charge becomes

Qξ [Φ]→Qξ [Φ]+Y[Φ;Lξ Φ], (4.83)

up to an exact (n− 2)-form which can be reabsorbed in the (n− 2)-form ambiguity for kIW
ξ

dis-
cussed above. Therefore, this ambiguity modifies kIW

F given in (4.73) by

kIW
ξ
[Φ;δΦ]→ kIW

ξ
[Φ;δΦ]−δY[Φ;Lξ Φ]− ιξ dY[Φ;δΦ]. (4.84)

Definition Let us introduce an important (n−2)-form which is involved in the relation between
the Barnich-Brandt and Iyer-Wald prescriptions discussed in the remark below. We define

E[Φ;δΦ,δΦ] =−1
2

In−1
δΦ

θ =−1
2

In−1
δΦ

In
δΦ

L. (4.85)

Remark We now relate the Barnich-Brandt and the Iyer-Wald prescriptions to construct the (n−
2)-form. Let us start from the expression (4.71) of the variation of the Lagrangian. We apply the
homotopy operator on each side of the equality. We have

In
δΦ

δL = In
δΦ

(
δΦ

δL
δΦ

)
− In

δΦ
dθ

= In
δΦ

(
δΦ

δL
δΦ

)
−δθ −dIn−1

δΦ
θ .

(4.86)

Therefore,

In
δΦ

δL+δθ = In
δΦ

(
δΦ

δL
δΦ

)
−dIn−1

δΦ
θ . (4.87)

Since [δ , In
δΦ

] = 0 because δ 2 = 0, the left-hand side of the last equality can be rewritten as δ In
δΦ

L+

δθ = 2δθ = 2ω where we used (4.70). Now, using (4.48) and (4.85), we obtain the relation
between the presymplectic form ω and the invariant presymplectic current W as

ω[Φ;δΦ,δΦ] = W[Φ;δΦ,δΦ]+dE[Φ;δΦ,δΦ]. (4.88)

Contracting this relation with iLξ Φ results in

ω[Φ;Lξ Φ,δΦ] = W[Φ;Lξ Φ,δΦ]+dE[Φ;δΦ,Lξ Φ]. (4.89)

Finally, using the on-shell conservation laws (4.49) and (4.77), we obtain

kIW
ξ
[Φ;δΦ]≈ kξ [Φ;δΦ]+E[Φ;δΦ,Lξ Φ], (4.90)

up to an exact (n− 2)-form. Therefore, the Barnich-Brandt (n− 2)-form kξ [Φ;δΦ] differs from
the Iyer-Wald (n−2)-form kIW

ξ
[Φ;δΦ] by the term E[Φ;δΦ,Lξ Φ].
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Examples We illustrate these concepts with the case of general relativity. The (n− 2)-form
E[Φ;δΦ,δΦ] can be computed using (4.85). We obtain

E[g;δg,δg] =
√
−g

32πG
(δg)µ

σ
∧ (δg)σν(dn−2x)µν . (4.91)

When contracted with iLξ g, this leads to

E[g;δg,Lξ g] =−
√
−g

16πG
(∇µ

ξσ +∇σ ξ
µ)(δg)σν(dn−2x)µν , (4.92)

up to an exact (n− 2)-form. This expression can also be obtained from (4.90) by comparing
the explicit expressions (4.47) and (4.76). Notice that the difference between the Barnich-Brandt
and the Iyer-Wald definitions (4.92) vanishes for a Killing vectors ξ µ . Furthermore, a simple
computation shows that the (n− 2)-form (4.91) vanishes in both the Fefferman-Graham gauge
(3.8) and the Bondi gauge (3.10). Therefore, the Barnich-Brandt and the Iyer-Wald prescriptions
lead to the same surface charges in these gauges. For an example where the two prescriptions do
not coincide, see for instance, [12].

5. Applications

Asymptotic symmetries have a wide range of applications in theoretical physics. We briefly
mention two of them and explain why the formalism presented above is relevant in these contexts.

5.1 Holography

The holographic principle states that quantum gravity can be described in terms of lower-
dimensional dual quantum field theories [165, 167]. A concrete realization of the holographic
principle asserts that the type IIB string theory living in the bulk spacetime AdS5 × S5 is dual to
the N = 4 supersymmetric Yang-Mills theory living on the four-dimensional spacetime boundary
[126]. The gravitational theory is effectively living in the five-dimensional spacetime AdS5, the
five dimensions of the factor S5 being compactified. A first extension of this original holographic
duality is the AdS/CFT correspondence which tells us that the gravitational theory living in the
(d + 1)-dimensional asymptotically AdS spacetime (AAdS2) is dual to a CFT living on the d-
dimensional boundary. Other holographic dualities with different types of asymptotics have also
been studied. A holographic dictionary enables one to interpret properties of the bulk theory in
terms of the dual boundary theory. For example, the dictionary imposes the following relation
between the symmetries of the two theories: Gauge symmetries in the bulk theory

⇐⇒
Global symmetries in the boundary theory.

 (5.1)

More specifically for us, consider a given bulk solution space with asymptotic symmetries. The
correspondence tells us that a set of quantum field theories exist that are associated with the bulk
solutions, such that in the UV regime, the global symmetries of these theories are exactly the
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asymptotic symmetries of the bulk solution space. Even if the AdS/CFT correspondence has not
been proven yet, it has been verified in a number of situations and extended in various directions.

We now mention a famous hint in favor of this correspondence using the relation (5.1). Brown
and Henneaux showed that the asymptotic symmetry group for asymptotically AdS3 spacetime with
Dirichlet boundary conditions is given by the infinite-dimensional group of conformal transforma-
tions in two dimensions. Furthermore, they revealed that the associated surface charges are finite,
are integrable, and exhibit a non-trivial central extension in their algebra. This Brown-Henneaux
central charge is given by

c =
3`
2G

, (5.2)

where ` is the AdS3 radius. The AdS/CFT correspondence tells us that there is a set of two-
dimensional dual conformal field theories. The remarkable fact is that, when inserting the central
charge (5.2) into the Cardy entropy formula valid for 2d CFT [159], this reproduces exactly the
entropy of three-dimensional BTZ black hole solutions [16, 17].

The holographic principle is believed to hold in all types of asymptotics. In particular, in
asymptotically flat spacetimes, from the correspondence (5.1), the dual theory would have BMS as
the global symmetry. Important steps have been taken in this direction in three and four dimensions
(see e.g. [13, 14, 20, 40, 73, 86, 87, 152] and references therein). Furthermore, in four-dimensional
asymptotically flat spacetimes, traces of two-dimensional CFT seem to appear, enabling the use
of well-known techniques of the AdS/CFT correspondence [15, 36, 57, 74, 82, 121, 132, 141, 150].
Notice that global BMS symmetry can be seen as a conformal Carroll symmetry [84,85,91], which
is especially relevant in the context of the fluid/gravity correspondence [50, 54, 59, 60, 100, 116].

5.2 Infrared physics

A connection has recently been established between various areas of gauge theories that are a
priori unrelated, namely asymptotic symmetries, soft theorems and memory effects (see [162] for
a review). These three fields of research are often referred to as the three corners of the infrared
triangle of gauge theories (see figure 2).

The first corner is the area of asymptotic symmetries that has been partially studied in these
notes. The second corner is the topic of soft theorems [96,122,173,174,178]. These theorems state
that any (n+1)-particles scattering amplitude involving a massless soft particle, namely a particle
with momentum q→ 0 (that may be a photon, a gluon or a graviton), is equal to the n-particles
scattering amplitude without the soft particle, multiplied by the soft factor, plus corrections of order
q0. We have

Mn+1(q, p1, . . . pn) = S(0)Mn(p1, . . . pn)+O(q0), (5.3)

where S(0) ∼ q−1 is the soft factor whose precise form depends on the nature of the soft particle
involved. Taking as soft particle a photon, gluon or graviton will respectively lead to the soft
photon theorem, soft gluon theorem and soft graviton theorem. A remarkable property is that the
soft factor is independent of the spin of the n particles involved in the process. Furthermore, some
so-called subleading soft theorems have been established for the different types of soft particles
and they provide some information about the subleading terms in q [48, 98, 118, 123, 175]. They
take the form

Mn+1(q, p1, . . . pn) = (S(0)+S(1))Mn(p1, . . . pn)+O(q), (5.4)
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Soft
theorems

Memory
effects

Asymptotic
symmetries

Figure 2: Infrared sector of gauge theories.

where S(1) ∼ q0 is the subleading soft factor. Proposals for sub-subleading soft theorems can also
be found [49, 76, 180].

The third corner of the triangle is the topic of memory effects [42, 45, 46, 58, 88, 143, 168,
169, 176, 179]. In gravity, the displacement memory effect occurs, for example, in the passage of
gravitational waves. It can be shown that this produces a permanent shift in the relative positions
of a pair of inertial detectors. This shift is controlled by a field in the metric that is turned on
when the gravitational wave is passing through the spacetime region of interest. Considering the
Bondi gauge in asymptotically flat spacetime with boundary conditions (AF3) (equations (3.15)
with (3.18)), it can be shown that

∆sA
∝ ∆CAB, (5.5)

i.e. the angular displacement ∆sA of two inertial observers in the asymptotic region is dictated by
the field CAB. Three processes can turn on the field CAB and trigger an observable displacement
memory effect: a variation of the Bondi mass aspect M (ordinary memory effect), a burst of grav-
itational waves controlled by the news NAB (Christodoulou effect), or a burst of null matter (null
memory effect) [63]. The analogous memory effects can also be established in electrodynamics
(electromagnetic memory effect) [140, 166] and in Yang-Mills theory (color memory effect) [143]
where a field is turned on as a result of a burst of energy passing through the region of interest,
leading to an observable phenomenon. Notice that other memory effects have been identified in
gravity [65, 80, 92, 129, 136, 142, 147, 148], including the spin memory effect and the refraction
memory effect.

We now briefly discuss the relation between these different topics. It has been shown that if
the quantum gravity S -matrix is invariant under the BMS symmetry [161], then the Ward identity
associated with the supertranslations is equivalent to the soft graviton theorem [108]. Furthermore,
the displacement memory effect is equivalent to performing a supertranslation [163]. More pre-
cisely, the action of the supertranslation on the memory field CAB has the same effect as a burst
of gravitational waves passing through the region of interest. This can be understood as a vac-
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uum transition process [1, 62, 67, 68, 156]. Finally, a Fourier transform enables us to relate the soft
theorem with the memory effect, which closes the triangle. This triangle controlling the infrared
structure of the theory has also been constructed for other gauge theories [125, 128, 143]. Further-
more, subleading infrared triangles have been uncovered and discussed [53, 65, 71, 115, 120, 125].
In particular, the Ward identities of superrotations have been shown to be equivalent to the sublead-
ing soft graviton theorem. Furthermore, the spin memory effect and the refraction memory effect
have been related to the superrotations.

Finally, let us mention that this understanding of the infrared structure of quantum gravity is
relevant to tackle the black hole information paradox [105]. Indeed, an infinite number of soft
gravitons are produced in the process of black hole evaporation. Through the above correspon-
dence, these soft gravitons are related with surface charges, called soft hairs, that have to be taken
into account in the information storage [44, 101, 102, 106, 107, 131].
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A. Diffeomorphism between Bondi and Fefferman-Graham gauges

The diffeomorphism between Bondi and Fefferman-Graham gauges in asymptotically (A)dS4

spacetime has been worked out explicitly in [66, 149]. In this appendix, we briefly recall how the
solution space (3.30) associated with the preliminary boundary condition (3.19) in the Fefferman-
Graham gauge matches with the solution space (3.43) associated with the preliminary boundary
condition (3.20) in the Bondi gauge through this diffeomorphism. The components of the three-
dimensional boundary metric g(0)ab can be expressed in terms of the functions of the Bondi gauge
as

g(0)tt =
Λ

3
e4β0 +UC

0 U0
C, g(0)tA =−U0

A, g(0)AB = qAB. (A.1)

Furthermore, the degrees of freedom of the stress-energy tensor Tab are related to degrees of free-
dom of the Bondi gauge as

Ttt ∼M, TtA ∼ NA, TAB ∼ EAB. (A.2)

The precise relations can be found in the references. Notice that the constraint Da
(0)Tab = 0 trans-

lated in terms of the functions in the Bondi gauge gives the evolution constraints with respect to
the u coordinate for the Bondi mass aspect M and the angular momentum aspect NA.

B. Useful results and conventions

In this appendix, we establish some important frameworks and conventions. The aim of this
formalism is to manipulate some local expressions, as this is convenient in field theory. We closely
follow [61, 63].
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B.1 Jet bundles

Let M be the n-dimensional spacetime with local coordinates xµ (µ = 0, . . . ,n−1). The fields,
written as Φ = (φ i), are supposed to be Grassmann even. The jet space J consists in the fields
and the symmetrized derivatives of the fields (Φ,Φµ ,Φµν , . . .), where Φµ1...µk =

∂

∂µ1
. . . ∂

∂µk
Φ. The

symmetrized derivative is defined as

∂ Φ̃ν1...νk

∂Φµ1...µk

= δ
ν1
(µ1

. . .δ νk
µk)

δ
Φ̃
Φ . (B.1)

In the jet space, the cotangent space at a point is generated by the variations of the fields and their
derivatives at that point, namely (δΦ,δΦµ ,δΦµν , . . .). The variational operator is defined as

δ = ∑
k≥0

δΦµ1...µk

∂

∂Φµ1...µk

. (B.2)

We choose all the δΦ, δΦµ , δΦµν , . . . to be Grassmann odd, which implies that δ 2 = 0. Hence, δ

is seen as an exterior derivative on the jet space.
Now, we define the jet bundle as the fiber bundle with local trivialization (xµ ,Φ,Φµ ,Φµν , . . .).

Locally, the total space of the jet bundle looks like M× J. A section of this fiber bundle is a map
x→ (Φ(x),Φµ(x),Φµν(x), . . .). The horizontal derivative is defined as

d = dxµ
∂µ , where ∂µ =

∂

∂xµ
+ ∑

k≥0
Φµν1...νk

∂

∂Φν1...νk

. (B.3)

In this perspective, the variational operator can also be seen as the vertical derivative, i.e. the
derivative along the fibers. The exterior derivative on the total space can be defined as dTot = d+δ .
Notice that both d and δ are Grassmann odd and they anti-commute, namely

dδ =−δd. (B.4)

On the jet bundle, we write Ωp,q the set of functions that are p-forms with respect to the spacetime
and q-forms with respect to the jet space14.

B.2 Some operators

In this subsection, we introduce some additional operators used in the text and discuss their
properties.

The Euler-Lagrange derivative of a local function f , i.e. a function on the total space of the
jet bundle f = f [x,Φ,Φµ ,Φµν , . . .], is defined as

δ f
δΦ

= ∑
k≥0

(−1)k
∂µ1 . . .∂µk

(
∂ f

∂Φµ1...µk

)
. (B.5)

This operator satisfies
δ f
δΦ

= 0 ⇔ f = ∂µ jµ , (B.6)

14One often refers to a variational bicomplex structure
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where jµ is a local function (for a proof, see e.g. section 1.2 of [26]).
The variation under a transformation of characteristic Q (i.e. δQΦ = Q) is given by

δQ f = ∑
k≥0

(∂µ1 . . .∂µk Q)
∂

∂Φµ1...µk

+(∂µ1 . . .∂µk δQ)
∂

∂δΦµ1...µk

. (B.7)

The Lie bracket of characteristics is defined by [Q1,Q2] = δQ1Q2−δQ2Q1 and satisfies [δQ1 ,δQ2 ] =

δ[Q1,Q2]. A contracted variation of this type is Grassmann even and we have

δQd = dδQ, δδQ = δQδ . (B.8)

We also have the following relation between the variation under a transformation of characteristic
Q and the Euler-Lagrange derivative:

δQ
δ f
δΦ

=
δ

δΦ
(δQ f )−∑

k≥0
(−1)k

∂µ1 . . .∂µk

(
∂Q

∂Φµ1...µk

δ f
δΦ

)
. (B.9)

Let α be a (n− k)-form on the space-time M. We use the notation

α = α
µ1...µk(dn−kx)µ1...µk , (B.10)

where
(dn−kx)µ1...µk =

1
k!(n− k)!

εµ1...µkν1...νn−k dxν1 ∧ . . .∧dxνn−k (B.11)

and where εµ1...µn is completely antisymmetric and ε01...n−1 = 1. We can check that

dα = ∂σ α
[µ1...µk−1σ ](dn−k+1x)µ1...µk−1 . (B.12)

The interior product of a spacetime form with respect to a vector field ξ is defined as

ιξ = ξ
µ ∂

∂dxµ
. (B.13)

Notice that we can also define the interior product of a jet space form with respect to a characteristic
Q as

iQ = ∑
k≥0

(∂µ1 . . .∂µk Q)
∂

∂δΦµ1...µk

. (B.14)

It satisfies
iQδ +δ iQ = δQ, iQ1δQ2−δQ2 iQ1 = i[Q1,Q2]. (B.15)

The homotopy operator Ip
δΦ

: Ωp,q 7→Ωp−1,q+1 is defined as

Ip
δΦ

α = ∑
k≥0

k+1
n− p+ k+1

∂µ1 . . .∂µk

(
δΦ

δ

δΦµ1...µkν

∂α

∂dxν

)
(B.16)

for α ∈Ωp,q. This operator satisfies the following relations

δ = δΦ
δ

δΦ
−dIn

δΦ
when acting on spacetime n-forms, (B.17)

δ = Ip+1
δΦ

d−dIp
δΦ

when acting on spacetime p-forms (p < n). (B.18)
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Furthermore,
δ Ip

δΦ
= Ip

δΦ
δ . (B.19)

Notice that the homotopy operator is used to prove the algebraic Poincaré lemma (4.16).
Similarly, the homotopy operator with respect to gauge parameters F is defined as Ip

F : Ωp,q 7→
Ωp−1,q, where

Ip
Fα = ∑

k≥0

k+1
n− p+ k+1

∂µ1 . . .∂µk

(
F

δ

δFµ1...µkν

∂α

∂dxν

)
. (B.20)

It satisfies
Ip+1
F d+dIp

F = 1. (B.21)
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