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1. Introduction

These lecture notes present an introduction to the functional renormalisation group (FRG) and
its application to asymptotically safe quantum gravity. The renormalisation group (RG) deals with
the physics of scales and was pioneered by Wilson [1–4]. At different scales, different degrees
of freedom dominate a physical system. For example, at small length scales, which is equivalent
to high energies and large momenta, quarks and gluons are the dominant degrees of freedom of
quantum chromodynamics (QCD). On the other hand, at large length scales, the dominant degrees
of freedom are hadrons and, in principle, no knowledge about quarks and gluons is needed to accu-
rately describe the physics at these scales. The RG is the perfect tool to describe these changes of
physics over the scales. A guiding question throughout these lecture notes is how the fundamental
degrees of freedom at the microscopic scale evolve into macroscopic physics.

The FRG is a functional, non-perturbative RG equation derived by Christof Wetterich in 1993
[5] and is therefore also called the Wetterich equation. Other functional RG equations have been
used before like the Wegner-Houghton equation [6] or the Polchinski equation [7]. Compared to
those, the Wetterich equation implements the RG process on the quantum effective action, i.e., it
aims at computing the generating functional of the one-particle irreducible (1PI) n-point functions.
The Wetterich equation is easily applied to various systems and it offers many different system-
atic approximation schemes. This has led to successful applications in solid-state physics, QCD,
quantum gravity and many other fields.

With the FRG we aim at exploring quantum field theories at strong coupling where perturba-
tion theory is failing. The FRG allows us to describe physics beyond perturbation theory. Standard
examples of non-perturbative physics are functions that involve e−1/x2

. In these functions, each
Taylor coefficient around x = 0 is identically vanishing. They are closely related to instanton con-
tributions. Loosely speaking, the FRG captures these contributions since we do not expand around
x = 0. The FRG also naturally yields results that are all order in the coupling. Typically they appear
in the shape of ∼ 1/(1+Cg), where g is the coupling and C is a constant or a function of other
couplings.

Since the FRG aims at exploring non-perturbative physics, it has to be compared to the lattice,
which is the standard tool in non-perturbative physics. Compared to the lattice, the FRG can
provide an analytic and thus more fundamental understanding of many physical mechanisms. More
importantly, the FRG can be applied in areas where the lattice fails. For example in QCD, a central
goal is to obtain the full phase diagram of the theory in terms of the temperature T and the chemical
potential µ . We live at low temperature and low density where QCD is confining and the quarks
and gluons form hadrons. At high temperatures, which we can probe at collider experiments,
we find the quark-gluon plasma, where the quarks and gluons are almost non-interacting due to
the asymptotic freedom of the theory. The corresponding phase transition is a crossover at zero
chemical potential while it is a first-order phase transition at zero temperature. In between, there
is a critical point where the phase transition is second-order. The existence and the location of this
critical point is an up-to-date research topic within theory and experiment. From the theoretical
side, the lattice has been the most powerful tool to explore the phase diagram. However, the
lattice only works as long as µ/T is small due to the infamous sign problem. At non-vanishing
chemical potential, the action becomes complex and cannot be used as a probability measure for

1



P
o
S
(
M
o
d
a
v
e
2
0
1
9
)
0
0
5

FRG and Asymptotically Safe Quantum Gravity Manuel Reichert

Monte-Carlo algorithms anymore. In consequence, lattice simulations become exponentially more
expensive with an increasing chemical potential, effectively restricting the accessible region to
small µ/T . The FRG is providing a complementary non-perturbative tool to explore the phase
diagram of QCD. The FRG does not have a sign problem and thus should be able to describe the
phase diagram at a finite chemical potential.

Asymptotically safe quantum gravity is the main area of FRG application that we discuss in
these lecture notes. Quantum gravity is a very particular example since ordinary perturbation the-
ory fails, as we will discuss in Sec. 3.1. As a consequence, a plethora of different theories have
emerged, for example, string theory [8–13], loop quantum gravity and spin foams [14–21], causal
and euclidean dynamical triangulations [22–26], Hořava-Lifshitz gravity [27–30], and causal sets
[31–33]. The asymptotic safety scenario conjectures the existence of an interacting fixed point of
the RG flow, which allows the non-perturbative quantisation of gravity. The FRG is here a unique
non-perturbative tool for this computation within the framework of quantum field theories and with-
out discretising spacetime. Lattice approaches like causal and euclidean dynamical triangulations
are probing the same theory and the methods should complement each other in the future.

These notes do not fulfil the purpose of a review and I apologise for any omission of references.
For reviews about the FRG see [34–38] and about asymptotic safety see [39–47]. For other lecture
notes about the functional renormalisation group, I recommend [48, 49]. I included some ideas of
these lecture notes here. For lecture notes about asymptotically safe quantum gravity, I recommend
[50].

2. The Functional Renormalisation Group

Throughout these notes, we assume that the QFT has already been Wick rotated and con-
sequently we work with Euclidean signature. The physical information of the theory has to be
extracted afterwards by analytic continuation. The derivations in this section are fully general,
for all examples, we resort to a scalar theory for simplicity. We start with a recap of generating
functionals in QFT, which is a necessary basis for the derivation of the Wetterich equation in the
subsequent section.

2.1 Generating functionals

The Euclidean generating functional of correlation functions is given by

Z [J] =
1

N

∫
Dϕ exp

{
−S[ϕ]+

∫
x
J(x)ϕ(x)

}
. (2.1)

Here N is a normalisation factor, J(x) are the sources and
∫

x =
∫

d4x. The path integral contains
divergences as usual. These divergences need to be regularised and renormalised. In (2.1) we are
assuming that this has already been done, e.g., by a cutoff regularisation and thus the generating
functional is finite. By taking functional derivatives of (2.1) with respect to the source we can
generate the n-point correlation functions

〈ϕ(x1) . . .ϕ(xn)〉J =
1

Z [J]
δ nZ [J]

δJ(x1) . . .δJ(xn)

2
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n n-point correlation function interpretation

0 〈1〉 = 1 normalisation

1 〈ϕ(x)〉 = φ(x) mean field

2 〈ϕ(x1)ϕ(x2)〉 = 〈ϕ(x1)ϕ(x2)〉c +φ(x1)φ(x2) propagator

3 〈ϕ(x1)ϕ(x2)ϕ(x3)〉 = 〈ϕ(x1)ϕ(x2)ϕ(x3)〉c + . . . three-point vertex

...
...

...
...

Table 1: The n-point correlation functions of a real scalar field theory. The prescription 〈· · · 〉c
denotes connected correlation functions. The table is taken from [49].

=

∫
Dϕ ϕ(x1) · · ·ϕ(xn)exp{−S[ϕ]+

∫
xJ(x)ϕ(x)}∫

Dϕ exp{−S[ϕ]+
∫

xJ(x)ϕ(x)} . (2.2)

In the second line of (2.2) we display the path integral representation of the correlation function.
This representation is not needed for major part of these lecture notes. In Tab. 1 we display the
lowest-order correlation functions. There we have distinguished between the connected and not-
connected part of the n-point functions. At the level of the propagator, the correlation function
contains a connected and a disconnected part, where the latter is described by the mean field. This
illustrates that the generating functional does not store information most efficiently: the information
of the mean field is already contained in the one-point function and it does not need to be computed
again. Consequently, the generating functional of the connected n-point functions, also known as
Schwinger functional, is introduced

W [J] = lnZ [J] . (2.3)

The connected n-point functions are generated with functional derivatives with respect to the source

δ nW [J]
δJ(x1) . . .δJ(xn)

≡W (n)[J] = 〈ϕ(x1) . . .ϕ(xn)〉J,c . (2.4)

Here we have introduced the notation W (n) for n functional derivatives. How can we see that the
Schwinger functional generates only connected correlation functions? As an example, we look at
the propagator

δ 2W [J]
δJ(x1)δJ(x2)

=
δ 2 lnZ [J]

δJ(x1)δJ(x2)
=

δ

δJ(x1)

1
Z [J]

δZ [J]
δJ(x2)

=
1

Z [J]
δ 2Z [J]

δJ(x1)δJ(x2)
− 1

Z [J]2
δZ [J]
δJ(x1)

δZ [J]
δJ(x2)

= 〈ϕ(x1)ϕ(x2)〉J−〈ϕ(x1)〉J 〈ϕ(x2)〉J
= 〈ϕ(x1)ϕ(x2)〉J,c ≡ G(x1,x2) . (2.5)
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Here we have defined the full quantum propagator G(x1,x2). Similarly, it is easy to show that also
the higher W (n) correspond to the connected part of the n-point functions.

An even more efficient way to store the information of a quantum theory is the effective action,
which is the Legendre transformation of the Schwinger functional with respect to the mean field

Γ[φ ] = sup
J

{∫
x
J(x)φ(x)−W [J]

}
=
∫

x
Jsup(x)φ(x)−W [Jsup] . (2.6)

In the second expression we have picked out a configuration of sources, which maximises the Leg-
endre transform. This supremum of the source is a function of the mean field Jsup[φ ]. The effective
action generates one-particle irreducible (1PI) n-point functions. 1PI means that the correspond-
ing Feynman diagram cannot be cut into two diagrams by the cut of a single internal line. These
1PI correlation functions are generated from the effective action by functional differentiation with
respect to the mean field

Γ
(n)[φ ]≡ δ nΓ[φ ]

δφ(x1) · · ·δφ(xn)
= 〈ϕ(x1) · · ·ϕ(xn)〉1PI . (2.7)

The effective action is the quantum analog of the classical action in the sense that it encodes the
full quantum physics at tree level.

So far we have only claimed that the effective action generates 1PI diagrams. We illustrate this
property again in an inductive way. Let us start with the fact that conjugate variable of the source
in (2.6) is indeed the mean field

φ(x) =
δW [J]
δJ(x)

∣∣∣∣
Jsup

=
1

Z [J]
δZ [J]
δJ(x)

∣∣∣∣
Jsup

= 〈ϕ(x)〉Jsup
. (2.8)

By taking one derivative of the effective action with respect to the mean field, we obtain the quan-
tum equation of motion

δΓ[φ ]

δφ(x)
= Jsup(x)+ sup

J


∫

y

δJ(y)
δφ(x)

(
φ(y)− δW [J]

δJ(y)

)
︸ ︷︷ ︸

=0

= Jsup(x) . (2.9)

We turn now to the two-point function, where we will find that the quantum propagator is the
inverse of the 1PI two-point function. Anticipating that result, we compute

∫
y

δ 2W

δJ(x1)δJ(y)
δ 2Γ

δφ(y)δφ(x2)
=
∫

y

δ

δJ(x1)

[
δW

δJ(y)

]
δ

δφ(y)

[
δΓ

δφ(x2)

]
=
∫

y

δφ(y)
δJ(x1)

δJ(x2)

δφ(y)
= δ (x1− x2) . (2.10)

This proves the relation

W (2)(x1,x2) = G(x1,x2) =
(

Γ
(2)(x1,x2)

)−1
. (2.11)
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W(3) = − Γ(3)G

G

G

W(4) = 3 Γ(3) Γ(3)G

G

G

G

G

− Γ(4)

G

G

G

G

Figure 1: Diagrammatic representation of W (3) and W (4) in terms of G, Γ(3), and Γ(4). The first
diagram in the second equation summarised the s, t, and u channel, indicated by the
factor 3.

For the higher n-point functions, we need the relation between a derivative with respect to the
source and with respect to the mean field

δ

δJ(x)
=
∫

y

δφ(y)
δJ(x)

δ

δφ(y)
=
∫

y

δW (1)(y)
δJ(x)

δ

δφ(y)
=
∫

y
G(x,y)

δ

δφ(y)
. (2.12)

This relation allows us to derive

〈ϕ(x1) · · ·ϕ(xn)〉c ≡W (n) =
n−1

∏
i=1

(∫
x′i

G(xi,x′i)
δ

δφ(x′i)

)
φ(xn) . (2.13)

In (2.13) it is important to notice that the propagator is still a function of the mean field φ and that
derivatives of the propagator generate the 1PI three-point function

δ

δφ(x1)
G(x2,x3) =

δ

δφ(x1)

(
Γ
(2)(x2,x3)

)−1
=−

∫
y1,y2

G(x2,y1)Γ
(3)(x1,y1,y2)G(x3,y2) . (2.14)

Evaluating (2.13) leads to the explicit representations of the connected correlation functions in
terms of 1PI correlation functions. For n = 3 this leads to

W (3) =−
∫

y1,y2,y3

G(x1,y1)G(x2,y2)G(x3,y3)Γ
(3)(y1,y2,y3) . (2.15)

This relation is displayed diagrammatically in Fig. 1, together with the corresponding one for n= 4.
From this diagrammatic representation, it becomes clear that the Γ(n) are amputated correlation
function and it becomes apparent that Γ(3) and Γ(4) are indeed the 1PI correlation function as
claimed before. This can be shown order by order for the higher n-point function.

The effective action is a very powerful object and so far we have discussed its derivation from
the generating functional. For a computation in terms of a path integral, we consider its exponential
and the relation to the generating functional (2.1). We obtain

e−Γ[φ ] = e−
∫

xJsup(x)φ(x)+W [Jsup]

5
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= e−
∫

x
δΓ[φ ]
δφ(x)φ(x)

∫
Dϕ e−S[ϕ]+

∫
xJsup(x)ϕ(x)

=
∫

Dϕ
′e−S[φ+ϕ ′]+

∫
xϕ ′(x) δΓ[φ ]

δφ(x) . (2.16)

In the last line we performed a shift of the integration variable ϕ → ϕ ′+φ . This is a path integral,
where the integrand depends on δΓ/δφ . It can only be solved for very simple cases. The repre-
sentation in (2.16) is nonetheless useful as it allows to discuss the symmetries of a theory on the
quantum level. A systematic approximation scheme of (2.16) is the vertex expansion

Γ[φ ] =
∞

∑
n=0

1
n!

∫
x1,...,xn

Γ
(n)[φ = 0](x1, . . . ,xn)φ(x1) · · ·φ(xn) , (2.17)

which we also use later in the FRG context. Inserting (2.17) into (2.16) and comparing the field
monomials leads to an infinite tower of integro-differential equations known as Dyson-Schwinger
equations [51–53]. This tower can be truncated to a finite amount of equations and, for example,
the application to QCD is well developed, see, e.g., [54–57]. We go a different path and combine
RG techniques with these functional methods.

2.2 Derivation of the Wetterich equation

The Wetterich equation [5, 58, 59] is a functional differential equation that interpolates from
the classical action to the quantum effective action. In comparison to (2.16), where all quantum
fluctuations are integrated out at once, the Wetterich equation integrates out these quantum fluc-
tuations shell by shell, in the spirit of a Wilsonian RG. For the derivation, we follow the same
steps as in the last section. We start from the generating function, where we suppress IR modes
below a scale k. We derive a flow equation for the scale-dependent generating function in the scale
parameter k. Subsequently, we switch to the Schwinger functional and eventually transform to the
quantum effective action. We denote the generating functional with suppressed IR modes by

Zk[J] =
1

N

∫
Dϕ p2≥k2 exp

{
−S[ϕ]+

∫
x
J(x)ϕ(x)

}
, (2.18)

where the subscript p2 ≥ k2 indicates that we only include momentum modes above the scale k.
For k→ 0, we get back the full generating functional Zk=0 = Z . Such a restriction of the path
integral does not preserve the symmetries of most QFTs. We come back to this issue in Sec. 2.7.

The full suppression of the IR modes leads to the Wegner-Houghton equation [6]. A more
general approach is to introduce a function that smoothly suppresses these modes. Thus, we define∫

Dϕ p2≥k2 =
∫

Dϕ exp{−∆Sk[φ ]} , (2.19)

where

∆Sk[φ ] =
1
2

∫
p
φ(p)Rk(p2)φ(−p) . (2.20)

Here we have defined
∫

p =
∫

d4 p/(2π)4 and Rk is the regulator function that suppresses modes with
p2 . k2 but leaves modes with p2 & k2 unaffected. This can be viewed as a momentum-dependent
mass term. The regulator function is required to have three properties

6



P
o
S
(
M
o
d
a
v
e
2
0
1
9
)
0
0
5

FRG and Asymptotically Safe Quantum Gravity Manuel Reichert

0 0.5 1 1.5
0

2

4

p2/k2

Rk/k
2

(∂tRk)/k
2

Figure 2: Example of the regulator function Rk(p2) (red solid curve) and its scale derivative
∂tRk(p2) (blue dashed curve). We plot (2.26) with n = 3. The regulator suppresses
IR modes for p2 . k2 due to its mass-like behaviour. The derivative of the regulator
is peaked around p2 ≈ k2 and in this way implements the integration of momentum
modes around that scale. It also implements the UV finiteness, since it is vanishing for
p2/k2→ ∞.

• Suppression of IR modes:

lim
p2→0

Rk(p2)> 0 . (2.21)

• Physical limit to ensure that Zk=0 = Z :

lim
k→0

Rk(p2) = 0 . (2.22)

• UV-limit to ensure that Γk=Λ = S:

lim
k→Λ→∞

Rk(p2)→ ∞ . (2.23)

A frequent parameterisation of the regulator is

Rk(p2) = p2r(p2/k2) , (2.24)

where r is the dimensionless shape function of the regulator. A common choice for the shape
function is the Litim-type regulator [60, 61]

rLitim(x) =
(

1
x
−1
)

Θ(1− x) . (2.25)

This shape function has the advantage that it often provides analytical flow equations. For nu-
merical purposes, the Litim-type shape function is less advantageous since it is not smooth. The
exponential shape function is an example for a smooth shape function

rexp(x) =
e−x2n

x
. (2.26)

7
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In Fig. 2, we display an example of a regulator, where we have chosen (2.26) with n = 3. There we
introduced the dimensionless scale derivative ∂t = k ∂k. The parameter t is called the RG time and
is defined by t = ln k

k0
, where k0 is some reference scale. Often the initial scale is used as reference

scale, k0 = Λ.
Let us now turn back to the scale-dependent generating functional Zk. We are interested in

a flow equation for Zk and thus we take a derivative of (2.18) with respect to the RG time t. The
term ∆Sk is the only term that is scale-dependent and thus

∂tZk[J] =
1

N

∫
Dϕ (−∂t∆Sk[ϕ])exp

{
−S[ϕ]−∆Sk[ϕ]+

∫
x
J(x)ϕ(x)

}
=−〈∂t∆Sk[ϕ]〉Zk[J] . (2.27)

Another convenient way to express this flow equation is to replace the field by a derivative with
respect to the source, ϕ = δ/δJ. Then we obtain

∂tZk[J] =−
(

∂t∆Sk

[
δ

δJ

])
Zk[J] =−

1
2

∫
p

δ 2Zk[J]
δJ(p)δJ(−p)

∂tRk(p2) . (2.28)

This is already a useful formulation of the flow equation for the generating functional. As we can
see, this is an integro-differential equation, the flow of Zk depends on Z

(2)
k . Importantly, we do

not need to solve a path integral to obtain Z = Zk=0.
We now switch to a flow equation for the Schwinger functional Wk = lnZk. Again, the full

Schwinger functional is obtained in the limit k→ 0, Wk=0 =W . We multiply (2.28) with 1/Zk and
use

δ 2Wk

δJ(x1)δJ(x2)
=

1
Zk

δ 2Zk

δJ(x1)δJ(x2)
− 1

Z 2
k

δZk

δJ(x1)

δZk

δJ(x2)

=
1

Zk

δ 2Zk

δJ(x1)δJ(x2)
− δWk

δJ(x1)

δWk

δJ(x2)
, (2.29)

as well as ∂tWk =
1

Zk
∂tZk. The flow equation is then given by

∂tWk[J] =−
1
2

∫
p

[
δ 2Wk

δJ(p)δJ(−p)
+

δWk

δJ(p)
δWk

δJ(−p)

]
∂tRk(p2) . (2.30)

The Polchinski equation [7] is a flow equation for the Schwinger functional and it can be obtained
from (2.30) by amputating the legs from the connected correlation functions. We turn now to the
flow equation for the scale-dependent effective action Γk. For this we use a modified Legendre
transform compared to (2.6)

Γk[φ ] = sup
J

{∫
x
J(x)φ(x)−Wk[J]−∆Sk[φ ]

}
. (2.31)

It is a choice to include the term ∆Sk into the Legendre transform. We only need to guarantee
that for k = 0 the original Legendre transform (2.6) is restored, which is indeed the case since
∆Sk=0 = 0. We will see that the choice to include ∆Sk in the Legendre transform results in a

8
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simpler flow equation. Eq. (2.31) implies that Γk +∆Sk is the Legendre transform of Wk. Thus, the
relations (2.8) and (2.9) are modified and now read

δ (Γk +∆Sk)

δφ(x)
= Jsup[φ(x)] ,

δWk

δJ(x)

∣∣∣∣
Jsup

= φ(x) . (2.32)

Consequently, also the relation to the quantum propagator Gk, see (2.11), is modified

Gk(p,−p) =
δ 2Wk

δJ(p)δJ(−p)
=

(
δ 2(Γk +∆Sk)

δφ(p)δφ(−p)

)−1

=
1

Γ
(2)
k +Rk

(p,−p) . (2.33)

We take now a scale derivative of (2.31) and use (2.30), (2.32), and (2.33). The flow of the scale-
dependent effective action is then given by

∂tΓk[φ ] =−∂tWk[J]−∂t∆Sk[φ ]+
∫

x
∂tJ(x)

[
φ(x)− δWk[J]

δJ(x)

]
︸ ︷︷ ︸

=0

∣∣∣∣∣
J=Jsup[φ ]

=
1
2

∫
p
[Gk(p,−p)+φ(p)φ(−p)]∂tRk(p2)−∂t∆Sk

=
1
2

∫
p

1

Γ
(2)
k +Rk

(p,−p)∂tRk(p2)

=
1
2

STr

[
1

Γ
(2)
k +Rk

∂tRk

]
= . (2.34)

This is the Wetterich equation in its most compact form. In the last step, we have generalised our
derivation and introduced the super trace, STr. The super trace sums over all discrete indices, such
as Lorentz and gauge indices, and integrates over continuous indices, such as space or momentum.
It further includes a minus sign for Grassmann valued fields, such as fermions or ghosts. In (2.34),
we have also introduced a diagrammatic representation of the Wetterich equation. The solid line
stands for the quantum propagator and the cross represents a regulator insertion. We use this
diagrammatic notation also later in these notes. Note that all quantities in this equation are fully
dressed, i.e., all quantities are formulated in term of the scale-dependent effective action and not in
terms of the bare action.

2.3 Properties of the Wetterich equation

It is now time to discuss the properties of the Wetterich equation.

• By construction, the limits of the scale-dependent effective action are given by the bare action
in the UV, Γk=Λ = S, and by the quantum effective action in the IR, Γk=0 = Γ. The latter
follows straightforwardly from the definition of Γk, (2.31), together with property (2.22) of
the regulator. For the former, strictly speaking, only holds up to regulator terms. One uses
that the regulator is divergent in the UV, (2.23), and this makes a saddlepoint approximation
in (2.31) exact.
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• The properties of the regulator guarantee the correct limits of Γk, but the regulator serves
more purposes. The derivative of the regulator is peaked around p2 ≈ k2, see Fig. 2. This
implements that momentum shells around p2 ≈ k2 are integrated out. Furthermore, the Wet-
terich equation is inherently finite due to the regulator in the UV as well as in the IR

1

Γ
(2)
k +Rk

←→ IR finiteness,

∂tRk ←→ UV finiteness.

• We can interpret a solution to (2.34) as trajectory between the bare action and the quantum
effective action in theory space. The theory space is the infinite-dimensional space of all
couplings. The couplings are the prefactors of all operators that are compatible with the
symmetry of the theory. We display a sketch of the theory space in Fig. 3.

• The Wetterich equation depends explicitly on the regulator, which we have just introduced
as a tool to integrate out fluctuations. We have certain restrictions on the choice of the regu-
lator, see (2.21), (2.22), and (2.23), but besides that, we are free to choose any function. This
dependence on the regulator vanishes by construction for k = 0, where we end up with the
quantum effective action. We can visualise this in theory space: different regulators corre-
spond to different trajectories but the endpoint remains the same, see Fig. 3. The regulator
dependence of the trajectories reflects the scheme dependence of non-universal quantities
that is present in any QFT. Unfortunately, the regulator-independence does not hold in prac-
tical computations. If we truncate the coupling space and employ approximation, then dif-
ferent regulators lead to different quantum effective actions. It is an important task to find
regulators that allow for a fast convergence, which is known as optimisation of the regulator
function [60–62].

• It is worth to compare (2.34) with (2.16). In (2.16), the quantum effective action was given
by in terms of a path integral, while (2.34) has reduced the task to a functional differential
equation. Furthermore, it is easier to implement systematic approximation schemes to (2.34).

• We can expand (2.34) in loop orders and by that retain perturbation theory. We expand the
scale-dependent effective action with Γk = S+Γk,1-loop. The Wetterich equation is 1-loop on
the right-hand side and thus at 1-loop order we get

∂tΓk,1-loop =
1
2

Tr
[

1
S(2)+Rk

∂tRk

]
= ∂t

1
2

Tr
[
ln(S(2)+Rk)

]
, (2.35)

where we used in the last step that S(2) is not k dependent. Now it follows that

Γ1-loop =
1
2

Tr lnS(2)+ const. , (2.36)

which is the standard formula for the 1-loop effective action.

The flow equations for the 1PI n-point correlation functions are generated from (2.34) by functional
derivatives with respect to the mean field. It is important to remember that all n-point functions in

10
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Γk=Λ = Sbare

Γk=0 ≡ Γ

g1

g2

g3

Figure 3: Sketch of the theory space, which is the infinite-dimensional space of all couplings com-
patible with the symmetry of the theory. The bare action (purple dot) and the quantum
effective action (red dot) are beginning and the end point of a trajectory, which is a so-
lution to the Wetterich equation (2.34). Different choices of regulators correspond to
different trajectories, but they all lead to the same quantum effective action as long as no
truncation error is made. The figure is taken and adapted from [48].

(2.34) still carry field dependence, for instance, Gk[φ ] = (Γ
(2)
k [φ ] +Rk)

−1. Consequently, a field
derivative acts on the propagator with δ/δφ Gk =−Γ

(3)
k GkΓ

(3)
k . The flow equation for the one-point

function is given by

∂tΓ
(1)
k =−1

2
Tr
[
GkΓ

(3)
k Gk∂tRk

]
= , (2.37)

while the flow equation for the two-point function reads

∂tΓ
(2)
k =−1

2
Tr
[
Gk(Γ

(4)
k −2Γ

(3)
k GkΓ

(3)
k )Gk∂tRk

]
= − 1

2
. (2.38)

In these equations, we can observe an important hierarchy. The flow of the effective action (2.34)
depends on the two-point function, but not on higher n-point functions. The flow of the one-point
function (2.37) depends on the two- and three-point function, and the flow of the two-point function
(2.38) depends on the two-, three- and four-point function. In summary, ∂tΓ

(n)
k depends on Γ

(m)
k

with m = 2, . . . ,n+2. This suggests a systematic expansion scheme of the Wetterich equation: the
vertex expansion. The vertex expansion of the scale-dependent effective reads

Γk[φ ] =
∞

∑
n=0

1
n!

∫
x1,...,xn

Γ
(n)
k [φ = 0](x1, . . . ,xn)φ(x1) · · ·φ(xn) . (2.39)

Plugging this ansatz into (2.34) leads to an infinite tower of coupled differential equations, with the
first ones precisely given by (2.37) and (2.38). However, an important difference is that the Γ

(n)
k

11
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are now evaluated at vanishing field φ = 0. We can now cut the vertex expansion (2.39) for certain
nmax and systematically improve the truncation by increasing nmax.

Remarkably, all flow equations, (2.34), (2.37), and (2.38), are non-perturbative one-loop equa-
tions. The key point is that all quantities on the right-hand side of the Wetterich equation are fully
dressed, i.e., we do not use the bare propagator and vertices on the right-hand side. At the scale
where we initialise the flow k = Λ, the scale-dependent effective action is the bare action Γk=Λ = S
and thus at that scale, the full quantum propagator equals the bare propagator. As we successively
lower the RG scale, we feed back the changes of the propagator and the vertices at each RG step.
In this way, the flow iteratively collects loop contributions to all orders.

2.4 Beta functions and fixed points

The Wetterich equation is not only a tool to compute the quantum effective action, it also
allows for the computation of beta functions. We expand the scale-dependent effective action in
operators with scale-dependent couplings

Γk[φ ] = ∑
i

ḡi(k)Oi(φ) . (2.40)

The ḡi(k) are precisely the couplings that span the infinite-dimensional theory space, depicted in
Fig. 3. The scale derivative of the couplings result in the respective beta functions k ∂k ḡi(k) =
∂t ḡi(k) = βḡi . By taking the scale derivative of (2.40), we obtain

∂tΓk[φ ] = ∑
i

βḡiOi(φ) , (2.41)

and thus the flow of the scale-dependent effective action can be seen as beta functional. Since the
effective action is dimensionless, the couplings ḡi have the inverse dimension of the operator Oi,
which we denote by dOi = −dḡi . In (2.40) we include operators of all mass dimensions, not only
marginal operators. We make the couplings ḡi dimensionless with appropriate powers of the RG
scale k

gi = ḡi k−dḡi . (2.42)

The beta functions of the dimensionless couplings gi are then given by

βgi =−dgigi + k−dḡi βḡi . (2.43)

We see that the beta functions have a canonical part, which stems from the mass dimension of the
coupling, and a part that comes from quantum fluctuations.

Fixed points of the renormalisation group flow are of particular interest since a theory becomes
scale invariant there. They are defined by the vanishing of the beta functions of all dimensionless
couplings

βgi(~g
∗) = 0 , for all i . (2.44)

Here,~g∗ are the values of the fixed point. In theory space, fixed points are points where trajectories
of the flow equation begin or end. At these fixed points, the theory becomes quantum scale invari-
ant. There is an important distinction: theories can have a classical scale invariance, which is often
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broken by the quantum fluctuations. Here, the classical theory is not necessarily scale invariant but
it becomes scale invariant due to the quantum fluctuations. The most famous example for a fixed
point is g∗ = 0 in QCD, which is responsible for the asymptotic freedom of the theory. At this fixed
point, the couplings are vanishing and we called it a Gaußian fixed point. If the couplings are non-
vanishing, we call the fixed point non-Gaußian or interacting. Examples for interacting fixed points
are the Banks-Zaks fixed point [63, 64], the Wilson-Fisher fixed point [65] and a fixed point in the
Veneziano limit of scalar-gauge-Yukawa models, also known as Litim-Sannino model [66, 67].

Fixed points can either serve as a start point of an RG trajectory, in which case we call it an
ultraviolet (UV) fixed point, or they can serve as an endpoint of an RG trajectory, in which case
it is an infrared (IR) fixed point. Some fixed points are can only serve as UV fixed point, some
only as IR fixed point, some can be both. In the examples above, the Banks-Zaks and the Wilson-
Fisher fixed points are IR, while the Litim-Sannino fixed point is UV. This property is determined
by the flow in the vicinity of the fixed point. Consequently, we characterise a fixed point with the
linearised beta functions around the fixed point. The linearised beta functions are given by

βgi(~g) = βgi(~g
∗)︸ ︷︷ ︸

=0

−∑
j

Bi j(~g∗)(g j−g∗j)+O
(
(g j−g∗j)

2) , (2.45)

where we have introduced the stability matrix Bi j defined by

Bi j(~g) =−
∂βgi(~g)

∂g j
. (2.46)

We call the eigenvalues of the stability matrix θ j and corresponding eigenvectors~b j. Let us look
at the flow in one eigendirection of the stability matrix, i.e, ~g =~g∗+ c(t)~b j. The linearised flow
equation (2.45) reduces to ∂tc(t)~b j =−θ jc(t)~b j (no summation over j) and thus c(t)∼ e−θ jt . Now
the sign of θ j becomes important. If θ j is positive and we run towards the UV (t→∞), then c(t) is
decreasing and we flow into the fixed point. Consequently, this is called a UV attractive direction
of the fixed point. If θ j is negative, then c(t) increases for t→ ∞ and we flow away from the fixed
point. This is called a UV repulsive direction of the fixed point. If we run towards the IR (t→−∞),
then the roles are precisely opposite. For positive θ j, we flow away from the fixed point and the
direction is IR repulsive and for negative θ j, we flow into the fixed point and the direction is IR
attractive. If θ j = 0, we call the direction marginal. In this case, the higher-order contributions in
(2.45) have to be considered.

In the discussion so far, we implicitly assumed that the θ j are real, however, they do not have
to be. Assuming that the beta functions are real, then the eigenvalues can show up as complex
conjugate pairs. For the discussion above, the real part of these eigenvalues determines whether
the direction is attractive or repulsive. The imaginary part is responsible for a spiralling of the
flow around the fixed point. We will see later examples of this in the quantum gravity part. To
summarise, the real part of the eigenvalues determines whether a given direction of a fixed point is
attractive or repulsive in the following way

ℜ(θ j)> 0 ←→ UV attractive/IR repulsive,

ℜ(θ j)< 0 ←→ UV repulsive/IR attractive,
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ℜ(θ j) = 0 ←→ marginal. (2.47)

For a Gaußian fixed point, the eigendirections align exactly with the couplings and the eigenvalues
are given by the mass dimension of the operator. For a non-Gaußian fixed point, the situation is
more complicated since the eigendirections can have overlap with many couplings and even have
imaginary parts. Nonetheless, it is useful to separate the eigenvalues in a canonical part from the
mass dimension of the operator and an anomalous part which stems from the quantum fluctuations.
The size of the anomalous part can be used as a measure how non-perturbative the fixed point is.

The critical exponents of a fixed point are crucial information about a fixed point. Indeed,
the values of a non-Gaußian fixed point are non-universal, while the critical exponents are. We
illustrate this on a simple one-dimensional example. We consider the beta function of a coupling
g, with mass dimension dg and a fixed-point value g∗. We write the beta function as

βg = dg g+β1 g2 +β2 g3 + . . . , (2.48)

and perform a transformation of the coupling according to

g̃ = f (g) = g+ f1 g2 + f2 g3 + . . . . (2.49)

This can be interpreted as a change of the renormalisation scheme. The beta function of the new
coupling g̃ is now given by

βg̃ = ∂t f (g) = f ′(g)∂tg = f ′(g)βg . (2.50)

Here we see already that βg̃ is vanishing if we evaluate it at g∗ and consequently the new fixed-
point value is given by g̃∗ = f (g∗). Thus fixed-point values change under simple redefinitions of
the coupling. Let us continue and express (2.50) as a function of g̃ and expand in g̃. The resulting
beta function is

βg̃ = dg g̃+(β1 +dg f1) g̃2 +
(
β2−2dg f 2

1 +2dg f2
)

g̃3

+
(
β3− f1β2 +( f2− f 2

1 )β1 +5dg f 3
1 −8dg f1 f2 +3dg f3

)
g̃4 +O(g̃5)

dg=0
= β1 g̃2 +β2 g̃3 +

(
β3− f1β2 +( f2− f 2

1 )β1
)

g̃4 +O(g̃5) . (2.51)

We see that for dg = 0 the first two coefficients of the beta function remain unchanged and only
the higher-order coefficients are affected by the scheme change. This is known as two-loop univer-
sality of the beta function and it holds for marginal couplings in mass-independent renormalisation
schemes. The FRG is not a mass-independent renormalisation scheme and thus one does not nec-
essarily obtain the universal two-loop coefficient [68]. As illustrated in (2.51), for non-marginal
couplings, i.e., couplings with dg 6= 0, not even the one-loop coefficient is universal. Also contri-
butions from non-marginal couplings to the running of marginal couplings are not universal.

Let us have a look at the critical exponents under the same scheme transformation. The deriva-
tive of the beta function with respect to the coupling can be expressed as

∂βg̃

∂ g̃
=

∂g
∂ g̃

∂

∂g
f ′(g)βg =

1
f ′(g)

(
f ′(g)

∂βg

∂g
+ f ′′(g)βg

)
=

∂βg

∂g
+

f ′′(g)
f ′(g)

βg
g=g∗
=

∂βg

∂g
. (2.52)

At the fixed point, the stability matrix and the critical exponents remain unchanged and are thus
universal.
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2.5 Choice of the bare action

At this point, we pause for a second and think how in practical computations the bare action
at the initial scale is chosen. In this context, it is useful to distinguish between a fundamental and
a non-fundamental QFT. A fundamental QFT allows for a description on all energy scales, i.e., it
allows to push the initial scale towards infinity Λ→∞. The best known example in this category is
QCD. The theory becomes asymptotically free in the UV due to the Gaußian fixed point. In the last
section, we have explained that fixed points can also be interacting, which generalises asymptotic
freedom to asymptotic safety. Asymptotic safety can show up in a perturbative way as in the Litim-
Sannino model [66, 67] or in a non-perturbative way, as in quantum gravity [69], gauge theories
at large N f [70–75] or other matter models [76]. It is very challenging to prove the existence of
a non-perturbative fixed point and thus we just state that these theories might be asymptotically
safe. The existence of a UV fixed point makes a theory fundamental. If we want to describe such a
theory, the UV fixed point dictates the initial conditions and we can send the initial scale to infinity
Λ→ ∞. The remaining freedom is how to flow away from the fixed point, which is described by
the UV attractive directions of the fixed point as explained in the last section, see (2.47).

Most theories do not have a UV fixed point and are thus not fundamental. These theories
typically have a Landau pole at finite energy. For example in the Standard Model, the U(1) hy-
percharge coupling is diverging around 1040 GeV, assuming no additional particle content. Scalar
and U(1) theories by themselves are already not fundamental. If we insist and force the cutoff
towards infinity, the theory becomes free at all scales. This is known as the triviality problem, see
[77–81] for scalar theories and [82–84] for U(1). In non-fundamental theories, the chosen initial
scale is typically motivated by physics. It is the scale where we understand well the dominating
degrees of freedom or where we want to parameterise new physics. For example, the Standard
Model couplings are well described by perturbation theory up to the Planck scale. We can initialise
the flow at the Planck scale with the initial values provided by perturbation theory [85] and if we
set all higher-dimensional operators to zero, we obtain just the same IR physics as in perturbation
theory. But we can also parameterise new physics by including some higher-dimensional operators
at a scale Λ, see [86–91] for works in that direction. Here, the FRG works similar to an effective
field theory with the difference that the higher-dimensional operator does not have to be small and
we are not restricted to polynomial higher-dimensional operators.

We have introduced the RG scale k just as a tool to interpolate between the bare action and
the quantum effective action. Thus, this scale is a priori unphysical, just as beta functions are
unphysical. The physics is contained in the quantum effective action at k = 0. However, this does
not imply that it is impossible to extract physical information at finite k. Also in perturbation theory,
the first-order correction to the Coulomb potential can be extracted from a scale identification of
the running of the electric charge with the distance. Similarly, the scale k can often be identified
with a physical scale such as distance or momentum if the system has only one physical scale.
However, one has to be careful with artefacts from the regulator.

2.6 Example: the anharmonic oscillator

We consider the quantum mechanical anharmonic oscillator as a simple example. We empha-
sise in particular the comparison of the FRG with ordinary perturbation theory. The idea for this
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example was taken from [48], where a lot of details are very nicely discussed. Here we also include
the comparison to resummed perturbation theory.

The action for the anharmonic oscillator is given by

S =
∫

dτ

(
1
2

ẋ2 +
1
2

ω
2x2 +

1
24

λx4
)
. (2.53)

The dot indicates a derivative with respect to τ . We consider only the case with ω2 > 0 and λ > 0.
The symmetry-breaking case with ω2 < 0 was investigated with the FRG in [92, 93]. We are
interested in the ground state energy in the non-perturbative regime, i.e., for large λ � 1. We
display the computation with the FRG and with perturbation theory.

FRG We have to make an ansatz for the scale-dependent effective action. We choose the trunca-
tion

Γk[x] =
∫

dτ

(
1
2

ẋ2 +Vk(x)
)
. (2.54)

In a larger truncation we could add, for example, an x-dependent wave-function renormalisation
to the kinetic term 1

2 Zk(x)ẋ2, or higher-derivative terms. We do not include these terms since we
are interested in the ground-state energy and the contribution from these terms is subleading. From
(2.54), we compute the second derivative with respect to x, which is given by

δΓk[x]
δx(τ1)δx(τ2)

=
(
−∂

2
τ1
+V ′′k (x)

)
δ (τ1− τ2) . (2.55)

We furthermore perform a Fourier transformation from τ to p and obtain

Γ
(2)
k [x] = p2 +V ′′k (x) . (2.56)

Now we need to choose the regulator function. As explained in (2.25), the Limit-type regulator is
advantageous since it allows for analytic flow equations. For the anharmonic oscillator, it is even
an optimised regulator [60, 61]. It is given by

Rk = (k2− p2)Θ(k2− p2) . (2.57)

From this we can compute the scale derivative of the regulator

∂tRk = 2k2
Θ(k2− p2)+2k2(k2− p2)δ (k2− p2) = 2k2

Θ(k2− p2) , (2.58)

where we have used that xδ (x) = 0. From (2.56) and (2.57), we obtain the full propagator

Gk =
1

Γ
(2)
k +Rk

=
1

p2 +(k2− p2)Θ(k2− p2)+V ′′(x)
=

 1
k2+V ′′(x) for p2 ≤ k2

1
p2+V ′′(x) for p2 ≥ k2 .

(2.59)

We have now all ingredients to write down the full flow equation. We are only interested in the
ground-state energy and thus we consider only vanishing external momentum. This leads us di-
rectly to a flow equation for the effective potential

∂tVk(x) =
1
2

∫
∞

−∞

dp
2π

2k2Θ(k2− p2)

k2 +V ′′k (x)
=

1
π

k3

k2 +V ′′(x)
. (2.60)
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The initial condition of this flow equation at k =Λ is given by the potential in the bare action (2.53).
This flow equation can already be solved with numerical methods, for example with a grid in the
potential or with pseudo-spectral methods [91, 94, 95]. It is more instructive and suffices for our
purposes to expand the potential in a polynomial

Vk(x) = Ẽk +
1
2

w2
kx2 +

1
24

λkx4 + . . . . (2.61)

In comparison to the bare action (2.53), the couplings ωk and λk are now scale dependent. The
flow equation evolves them from their classical value, ωΛ = ω and λΛ = λ , to their values ω0

and λ0 where all quantum fluctuations are taken into account. The parameter Ẽk is not the desired
ground-state energy but shifted by an unphysical constant due to the regulator. One can avoid
this unphysical shift by adapting the implementation of the regulator [96]. Here, we subtract the
unphysical constant by demanding that the ground-state energy should be zero for w = λ = 0. In
other words, the initial condition ẼΛ depends on Λ and we have to adjust it with counterterms such
that Ẽ0 = 0 for w = λ = 0. From (2.60) and (2.61), we obtain a flow equation for Ẽk by setting
x = 0

∂kVk(x = 0) = ∂kẼk =
1
π

k2

k2 +w2
k
. (2.62)

We shift Ẽk to Ek, such that Ek = 0 for w = λ = 0 with the initial condition EΛ = 0. The shifted
flow is given by

∂kEk =
1
π

(
k2

k2 +w2
k
−1
)
. (2.63)

From (2.60) and (2.61), we can easily obtain the other flow equations

∂kw2
k =−

1
π

k2(
k2 +w2

k

)2 λk , (2.64)

∂kλk =
6
π

k2(
k2 +w2

k

)3 λ
2
k . (2.65)

The flow of the ground-state energy (2.63) depends only on ωk but not λk. Diagrammatically it
corresponds to a bubble without external legs as in (2.34). The flow of the frequency (2.64) depends
now also on λk, but it does not depend on higher-order operators, that we have neglected in (2.61).
Diagrammatically it corresponds to the second diagram in (2.38). The flow of λk (2.65) would
depend on higher-order terms ∼ x6. This is an important hierarchy that justifies the polynomial
expansion for the computation of the ground-state energy. A term ∼ x6 only enters in ∂kλk, which
in turn enters in ∂kωk, which is the only quantity that influences ∂kEk.

We can now integrate numerically (2.64) and (2.65) for different values of the initial condition
ω and λ . We plug the resulting functions, ωk and λk, into (2.63), which we also integrate numer-
ically and obtain the ground-state energy E0. The results are displayed in Fig. 4 and Fig. 5. We
discuss them after introducing the results from perturbation theory.

For analytic results, we need to expand the flow equations in a perturbation series. Generally,
I would not recommended this procedure since the FRG computations are more tedious than ordi-
nary perturbation theory. Also, the validity of the FRG results reduces to small values of λ since
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we expand perturbatively. Nonetheless, it is an instructive computation since all integrals can be
performed analytically. For this computation we drop the scale dependence of the quartic coupling
λk = λ and expand the frequency in powers of λ , w2

k = w2
0.k +w2

1,kλ +w2
2,kλ 2. We plug this into

(2.64), expand again in λ and integrate down from ∞ to some scale k. We use the result to integrate
(2.63) from k = ∞ to k = 0, which gives us the desired ground state energy. The boundary con-
ditions are given by w0,k=∞ = w and wi,k=∞ = 0. The flow of w2

k is vanishing at O(λ 0) and hence
w0,k = w. At order O(λ ) and O(λ 2) we have

∂tw2
1,k =−

1
π

k2

(k2 +w2)2 , ∂tw2
2,k =

2
π

k2w2
1,k

(k2 +w2)2 . (2.66)

The corresponding integrals can be solved analytically, for example, with Mathematica. We plug
these results into (2.63) and integrate them down, which again can be done analytically. The result
is

E0 =−
∫

∞

0
dk ∂k Ek =

∫
∞

0
dk

1
π

(
1− k2

k2 +w2
k

)
=

1
2

w+
3
4

(
λ

24w3

)
w− 3

16π
(8π

2 +29)
(

λ

24w3

)2

w+ . . . . (2.67)

Let us compare this result to ordinary perturbation theory

E0,PT =
1
2

w+
3
4

(
λ

24w3

)
w− 21

8

(
λ

24w3

)2

w+ . . . . (2.68)

The one-loop coefficient is universal and thus the got the right answer. The two-loop coefficient
in (2.67) depends on the choice of the regulator. With the Litim regulator (2.57) we obtained a
coefficient that is ∼ 20% too small. An interesting feature is that the FRG two-loop result is a
combination of a rational and an irrational number, while all coefficients in perturbation theory
remain rational. This is due to the regulator: with a different regulator, the coefficient can become
rational. In summary, the FRG has given us a good estimate of the perturbative two-loop coefficient.
However, it is most powerful with a numerically integration of the flow equations as we will see
soon.

Perturbation theory The standard approach in perturbation theory is the computation in terms
of Feynman diagrams. The lowest loop orders are given by

O(λ 1) : (2.69a)

O(λ 2) : (2.69b)

O(λ 3) :
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(2.69c)

All momentum integrals can be solved easily and we obtain the result in (2.68). The computation of
higher loop orders via Feynman diagrams is very limited. The number of Feynman diagrams at each
order grows factorially and also the momentum integrals become more and more challenging to
solve. The growing number of Feynman diagrams reflects an important property of the perturbation
series: it is an asymptotic series, i.e., the radius of convergence is zero. This implies that the
estimate for the ground state energy with an increasing order in perturbation theory gets worse for
large λ while it improves for small λ . The optimal order in perturbation theory for a fixed λ is
roughly given by N ≈ 1/λ . Fortunately, this does not imply that we cannot get good estimates of
the ground-state energy for large λ , it only means that we have to employ resummation methods
like Borel resummation or Padé methods.

With Feynman diagrams we cannot get to high-orders in the perturbation series. However, in
this computation we are not doing QFT, we are only doing quantum mechanics and thus we can
get help from the Schrödinger equation. The Schrödinger equation for the anharmonic oscillator is
given by (

−∂
2
x +

1
2

x2 +
1
24

λx4
)

φ(x) = E(λ )φ(x) . (2.70)

With an appropriate ansatz, one can obtain a difference equation, which allows to determine the
coefficients of the perturbative series recursively. This was first derived by Bender and Wu [97].
The recursive equation is given by

2 jBi, j = ( j+1)(2 j+1)Bi, j+1 +Bi−1, j−2−
i−1

∑
p=1

Bi−p,1Bp, j , (2.71)

with the initial conditions B0,0 = 1, Bi,0 = B0,i = 0, and Bi, j = if j > 2i. Then, an = (−1)n+1Bn,1

are the coefficients of the series

E0 = ∑
n

an

(
λ

24w3

)n

w . (2.72)

With this recursive equation one can easily obtain the first 100 coefficients on a computer within a
few minutes.

In terms of resummation methods, we use Padé approximants in combination with a Borel
transform. Padé approximants provide analytic continuations of truncated series expansions and
are widely used in physical applications [98]. The Borel transform turns the asymptotic series into
a convergent series. Often these transformations are supplemented with a conformal map, which
further improves the accuracy [99–102]. In principle, one can apply the Padé approximant without
the Borel transform, but then the results are less accurate. The Padé-Borel transformation is given
by the following steps:

i) We first compute the Borel transform of the perturbation series, given by

E0(λ ) =
N

∑
n=0

An λ
n −→ B[E0](z) =

N

∑
n=0

An

n!
zn . (2.73)
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Figure 4: The energy of the ground state of the anharmonic oscillator as a function of λ for ω = 1.
FRG approx 1 is based on a numerical integration of (2.63) and (2.64), while FRG
approx 2 additionally includes (2.65). We compare this to the Padé approximants of the
Borel transform PB[n,m], where n is the degree of the polynomial of the numerator,
m of the denominator, and n+m is the order of the perturbation series needed for this
approximant. The exact solution stems from a well-converged numerical diagonalisation
of Hamilton operator in terms of ladder operators.

While the original perturbation series has zero radius of convergence, its Borel transform has
a finite radius of convergence.

ii) We apply a Padé approximant to the perturbation series in the Borel plane. The conversion
of a perturbation series of order N to a Padé approximant is given by

B[E0](z) =
N

∑
n=0

An

n!
zn −→ P [R,S](z) =

PR(z)
QS(z)

. (2.74)

The conversion is algorithmic and leads to a ratio of two polynomials PR and QS, of order
R and S respectively, where R+ S = N. It is available as built-in function in Maple and
Mathematica.

iii) We now have to invert the Borel transform. The inverse of a Borel transform is nothing else
but a Laplace transform

P [R,S](z) =
PR(z)
QS(z)

−→ PB[R,S] =
∫

∞

0
dze−λ P [R,S](λ z) . (2.75)

It might be necessary to perform the integral numerically.

We denote this whole procedure by PB[R,S]. With these transformations, we obtain access to
results at large coupling λ � 1.
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Figure 5: The error of the ground-state energy of the anharmonic oscillator as a function of λ for
ω = 1. The labels are identical to Fig. 4. All approximations have small errors for the
displayed region. Remarkably, the error of the FRG approximations is growing slower
than the error of the Padé-Borel approximants.

Comparison We compare now the results from FRG and perturbation theory. We look at the
ground-state energy as a function of λ for ω = 1. In Fig. 4, we display FRG results in two ap-
proximations: approximation 1 is based on the numerical integration of (2.63) and (2.64), while
approximation 2 also includes (2.65). From perturbation theory, we include the diagonal Padé-
Borel transforms PB[5,5] and PB[10,10]. We also provide a reliable estimate of the exact result,
which stems from a well-converged numerical diagonalisation of the Hamilton operator in terms
of ladder operators. The errors with respect to this well-converged solution are displayed in Fig. 5.
Remarkably, all results have a very small error in the displayed region. The error of the FRG
approximation 1 never exceeds 3% and the FRG approximation 2 is even below 0.6%. The Padé-
Borel transform stemming from 10 perturbative coefficients is maximally 2% off, while the error of
the transform from 20 coefficients is even below 0.06%. There is one very remarkable feature: the
error of the FRG is growing slower with λ than the error of the Padé-Borel transform. This means
that for some large λ , the FRG approximation is better than a Padé-Borel transform. This fact
can be understood: in the FRG computation we never expand around λ = 0. The error increases
nonetheless because the system get more strongly coupled and higher-order terms contribute more
significantly. But in comparison, the Padé-Borel transform is based on the perturbative expansion
around λ = 0 and thus a stronger growth ot the error with λ is expected. In summary, the FRG
presents itself as a very useful tool, in particular, at strong coupling and in theories where the
computation of many terms in the perturbation series is tedious.

2.7 Symmetries with the FRG

In this section, we discuss how symmetries are handled in the FRG framework. This section
takes many ideas from [48]. In most theories, we have an underlying classical symmetry, for
example, a (non-)Abelian gauge, a diffeomorphism, a Z2 or an O(N) symmetry. Whether this
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symmetry is broken upon quantisation depends on the anomaly associated to the symmetry. We
assume that the theory is anomaly free and preserved upon quantisation.

It is important how the regularisation scheme handles the symmetry of the theory. For exam-
ple, dimensional regularisation typically preserves a gauge symmetry, while a cutoff regularisation
breaks it. For this reason, dimensional regularisation is often the preferred regularisation scheme.
This does not imply that one cannot use a cutoff regularisation in gauge theories. Indeed, the FRG
is inherently cutoff regularised and we show in this section that symmetries can be properly treated
with the FRG. The upshot is that symmetries are apparently broken, but we can formulate sym-
metry identities that encode the symmetry. These identities allow us to restore the symmetry at
k = 0.

We start with the assumption that the QFT is invariant under a symmetry transformation, for
example, O(N) or SU(N). With G we denote the generator of an infinitesimal version of this
symmetry transformation. This means that G φ is linear in φ . For a global O(N) symmetry, G is
given by

G a
O(N) =− f abc

∫
x
φ

b(x)
δ

δφ c(x)
. (2.76)

The generator takes the same form without the spacetime integral for the local version of the sym-
metry. A gauge transformation in Yang-Mills theory is generated by

G a
SU(N) =−Dab

µ (x)
δ

δAb
µ(x)

=−
(

∂µδ
ab−g f abcAc

µ(x)
)

δ

δAb
µ(x)

. (2.77)

We apply now a generic generator to the path integral representation in (2.1)

0 =
1

Z [J]

∫
Dϕ G e−S[ϕ]+

∫
xJ(x)ϕ(x) , (2.78)

where we have assumed that the measure is invariant under the symmetry transformation. We make
this equation more explicit by applying the generator to the exponential

0 =
1

Z [J]

∫
Dϕ

(
−(G S[ϕ])+

∫
x
J(x)(G ϕ(x))

)
e−S[ϕ]+

∫
xJ(x)ϕ(x)

=−〈G S〉J +
〈∫

x
J(x)(G ϕ(x))

〉
J
. (2.79)

We are interested in the effect of the symmetry transformation on the effective action and conse-
quently we evaluate the equation at the supremum of the source J[φ ]

0 =−〈G S〉J[φ ]+
∫

x
J[φ ]〈G ϕ〉J[φ ] =−〈G S〉J[φ ]+

∫
x

δΓ

δφ(x)
G φ(x) . (2.80)

Here we have used that 〈ϕ〉J[φ ] = φ and J[φ ] = δΓ

δφ
, see (2.8) and (2.9). This leads us to

G Γ[φ ] = 〈G S〉J[φ ] . (2.81)

The effective action is invariant under a symmetry if the bare action and the measure is invariant
under that symmetry. This simple statement becomes more involved when we consider gauge fixing
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Γk=Λ = S+ c.t.

Γk=Λ = S

Γk=0 ≡ Γ

W

Wk

g1

g2

g3

Figure 6: Sketch of the (modified) Ward identity as a hypersurface in theory space. The symmetry-
breaking terms have to be carefully adjusted to lie within the surface of the modified
Ward identity. An error of the flow due to the truncation can lead to a deviation of the
flow trajectory from the surface of the modified Ward identity. The figure is taken and
adapted from [48].

and regularisation. Let us assume that we are dealing with a symmetry that requires a gauge-fixing
action Sgf with the corresponding ghost action Sgh. Both are breaking the explicit gauge invariance,
but instead, they are invariant under a BRST symmetry [103, 104]. Now, (2.81) becomes the Ward-
Takahashi identity [105, 106]

W = G Γ[φ ]−
〈
G
(
Sgf +Sgh

)〉
J[φ ] = 0 . (2.82)

This Ward-Takahashi identity encodes the gauge invariance of the effective action. It also dictates
which kind of terms are allowed in the effective action. In the case of Yang-Mills theory, it forbids,
for example, a mass term for the gauge boson, i.e., the term

∫
m2

AAµAµ is not compatible with
(2.82). In the case of QED, it forbids (sub-)diagrams with an odd number of external photon legs.

What happens to the Ward-Takahashi identity if we add a regulator? In the best case, we can
choose a regulator that is invariant under the respective symmetry. In case of an O(N) symmetry
this is possible with

∆Sk =
1
2

∫
p
ϕ

a(−p)δ abRk(p)ϕb(p) . (2.83)

In case of SU(N) or gravity, this is not possible. The regulator is a mass-like term, which is
quadratic in the fields, and we just stated that in Yang-Mills theory the Ward-Takahashi identity
(2.82) forbids such a term. In such cases, the regulator introduces a new source of symmetry
breaking. We can compute the effect on the scale-dependent effective action

0 =
1

Z [J]

∫
Dϕ G e−S[ϕ]+∆Sk[ϕ]+

∫
xJ(x)ϕ(x) =−〈G (S+∆Sk〉J +

〈∫
x
J(x)(G ϕ(x))

〉
J
. (2.84)

We again evaluate this equation at the supremum of the source J[φ ] and use δφ (Γk +∆Sk) = Jsup,
see (2.32). This leads us to the modified Ward-Takahashi identity

Wk = G Γk +G ∆Sk−〈G (S+∆Sk)〉J[φ ] = 0 . (2.85)
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For a gauge theory with gauge-fixing and ghost action this implies

Wk = G Γk +G ∆Sk−
〈
G
(
Sgf +Sgh +∆Sk

)〉
J[φ ] = 0 . (2.86)

The modified Ward-Takahashi identity (mWI) reduces by construction to the standard Ward-Takahashi
identity at k = 0 since ∆Sk=0 = 0 . Then, the flow of the mWI is proportional to itself, ∂tWk ∝ Wk.
This means that if the mWI is fulfilled at some scale k, it is also fulfilled at all other scales. This
statement has to be taken with a grain of salt: in any practical computation, we have to work in a
truncation and usually the error due to the truncation violates the property ∂tWk ∝ Wk.

We can imagine the (modified) Ward identity Wk as hypersurface in theory space. This is
schematically displayed in Fig. 6. To be more precise, the modified Ward identity is a hypersurface
for each fixed k and for k→ 0 it is identical to the standard Ward identity. In Fig. 6, we display
Wk ’flowing’ from k = Λ to k = 0. An error due to the truncation leads to a deviation of the flow
from this hypersurface and we have to control that the error remains small. The starting point of
the flow has to be adjusted such that it lies within Wk. We illustrate that at the example of the
gluon mass parameter: The standard Ward identity (2.82) forbids a mass parameter of the type∫

m2
AAµAµ . However, the regulator is precisely a mass parameter of this type and thus the modified

Ward identity (2.86) does not forbid such a mass term. In fact, the modified Ward identity tells us
precisely what the value of the mass parameter has to be. By solving Wk, one finds that m2

A,k ∼ g2k2,
which also implies m2

A,k→ 0 for k→ 0. Instead, with the naive choice m2
A,Λ = 0, one would violate

the modified Ward identity and one would not find m2
A,k → 0 for k→ 0. For more details on the

gluon mass parameter, see, for example, [107]. This illustrates that the parameter at the initial scale
has to carefully chosen to fulfil the modified Ward identity.

3. Asymptotically Safe Quantum Gravity

We turn now to asymptotically safe quantum gravity. The development of the FRG was crucial
for this approach to quantum gravity, since it offers the necessary non-perturbative computational
tool without discretising spacetime.

3.1 Basics and perturbative quantum gravity

In asymptotically safe quantum gravity we make two basic assumptions:

• Diffeomorphism invariance is the fundamental symmetry of spacetime.

• The metric carries the fundamental degrees of freedom.

In other words, we would like to make sense of the path integral

Z[J] =
∫

Dgµν exp
{
−Sgravity[gµν ]+

∫
x
Jµν(x)gµν(x)

}
, (3.1)

for some suitable measure that is renormalised and selects exactly one configuration from each
diffeomorphism equivalence class. With the FRG, the latter is implemented with a gauge-fixing
condition. For the moment we assume that there is a gauge fixing, but we postpone the technical
details to Sec. 3.3. The action Sgravity contains the diffeomorphism invariant operators. The basic
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quantity to build these operators and to describe the curvature of spacetime is the Riemann tensor
Rρ

σ µν . Expressed in terms of the metric connection, it reads

Rρ
σ µν = ∂µΓ

ρ
νσ −∂νΓ

ρ
µσ +Γ

ρ
µλ Γ

λ
νσ −Γ

ρ
νλ Γ

λ
µσ . (3.2)

If we demand that the metric connection is torsion free then the unique solution is the Levi-Civita
connection

Γ
σ

µν = 1
2 gσρ

(
∂µgνρ +∂νgρµ −∂ρgµν

)
. (3.3)

From the Riemann tensor and the metric, we can build all curvature invariants including the Ricci
tensor Rµν and the Ricci scalar R, which are defined by

Rµν = Rλ

µλν
, R = gµνRµν . (3.4)

It is often useful to decompose the Riemann tensor in terms of those two invariants and the Weyl
tensor Cµνρσ , which is the fully traceless part of the Riemann tensor, i.e., Cλ

µλν
= 0. The decom-

position in d spacetime dimensions is given by

Rµνρσ =Cµνρσ −
1

d−2
(
Rµσ gνρ −Rµρ gνσ +Rνρ gµσ −Rνσ gµρ

)
− R

(d−1)(d−2)
(
gµρ gνσ +gµσ gνρ

)
. (3.5)

We can see from (3.2) and (3.3) that the Riemann tensor and all other invariants contain two deriva-
tives and thus have mass dimension 2 independent on the spacetime dimension. Let us now order
the curvature invariants according to their mass dimension

O(R0) : Λ ,

O(R1) : R ,

O(R2) : R2, RµνRµν ,CµνρσCµνρσ ,

O(R3) : . . . . (3.6)

At lowest order we only have the cosmological constant Λ and at mass dimension two only the
Ricci scalar R. At mass dimension four, more invariants show up of which three elements form a
basis. The square of the Riemann tensor can be expressed in terms of the other invariants

R2
µνρσ =C2

µνρσ −
2

(d−1)(d−2)
R2 +

4
d−2

R2
µν . (3.7)

There is one very interesting combination in four spacetime dimensions, the Gauß-Bonnet term,
which is given by

E = R2
µνρσ −4R2

µν +R2 . (3.8)

This term is a topological invariant, meaning that all infinitesimal variations of the metric are
vanishing, δE/δgµν = 0.
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At higher mass dimensions, the number of curvature invariants is growing immensely. This
already hints at a problem that we encounter in quantum gravity: in principle we need to include
all curvature invariants in the non-perturbative approach. This task poses very fast an impossible
technical challenge due to the vast amount of curvature invariants. To properly include all curvature
terms up to mass dimension four is already non-trivial.

Before we discuss the non-perturbative approach to quantum gravity, it is important to under-
stand the failure of perturbative quantum gravity. In the perturbative setup, we have to discuss two
distinct cases, since we can either quantise the Einstein-Hilbert action or a higher-derivative action.
We start with the Einstein-Hilbert action in d spacetime dimensions

SEH =
1

16πGN

∫
ddx
√

g(R−2Λ) , (3.9)

where
√

g =
√

detgµν . In natural units, the Newton coupling relates to the Planck scale with
GN = 1/M2

Pl. The Planck scale indicates where quantum gravity fluctuations become important,
MPl = 1.22 · 1019 GeV. The Newton coupling has the mass dimension [GN] = 2− d. In d = 2
spacetime dimensions, it is marginal and the theory is perturbatively renormalisable. However,
gravity is trivial in d = 2, in the sense that the Einstein-Hilbert action is topological. In d = 2+ ε ,
it can be shown that the theory has a perturbative asymptotically safe fixed point, which merges
with the Gaußian fixed point for ε → 0 [69, 108–112]. This interesting property has triggered
speculations, whether this fixed point persists until d = 4.

In d = 4, the Newton coupling has a negative mass dimension [GN] =−2. This is the first hint
that the Einstein-Hilbert action is perturbatively non-renormalisable in d = 4. Simply speaking,
there are up to n factors of Newton couplings in an n-loop diagram. In order to compensate for
the mass dimension of the Newton coupling, the only available quantity are momenta (except for
the cosmological constant). If these higher-order momentum terms appear in the divergent part of
the diagrams, then these divergences need to be reabsorbed in counterterms. This is only possible
by higher-order curvature invariants. If this mechanism takes place, then an infinite amount of
counterterms is needed, since at each loop order new higher-order curvature invariants appear. This
is precisely the failure of perturbative quantum gravity from the Einstein-Hilbert action: the theory
has no predictivity since infinitely many measurements are necessary to fix all the counterterms.

There is the small caveat, that we assumed that the higher-order momentum terms appear in
the divergent part of the diagrams. This is a reasonable assumption and one would need miraculous
cancellations at each loop order. Nonetheless, actual computations are needed to back up this
assumption. At one-loop order [113], the invariants R2 and R2

µν indeed appear in the divergent
parts of the diagrams. However, for Λ = 0 and without matter content, these invariants vanish
on-shell, which allows for a field redefinition of the metric that absorbs these divergences. Only
Rµνρσ , or equivalently Cµνρσ , does not vanish on-shell for Λ = 0, but such a term can always
be absorbed by the Gauß-Bonnet invariant in d = 4, see (3.8). In other words, pure quantum
gravity with Λ = 0 is doing fine at one-loop order. This may be a purely theoretical statement
since a theory of quantum gravity without matter is not able to describe our Universe. In any case,
the situation becomes worse at two-loop order [114–116]. There the divergences reveal that the

26



P
o
S
(
M
o
d
a
v
e
2
0
1
9
)
0
0
5

FRG and Asymptotically Safe Quantum Gravity Manuel Reichert

infamous Goroff-Sagnotti counter term is contributing

SGS =
1
ε

209
2880

1
(4π)4

∫
d4x
√

gC κλ
µν C ρσ

κλ
C µν

ρσ , (3.10)

This term does not vanish on-shell and has to be added as a counter term to the Einstein-Hilbert
action. This is interpreted as the onset of infinitely many counterterms that need to be introduced
and thus the theory is not predictive.

Next we consider a higher-derivative action as a starting point

SHD = SEH +
∫

d4x
√

g
(

1
2λ

CµνρσCµνρσ − w
3λ

R2 +
θ

λ
E
)
. (3.11)

Here we have decided to write the action in terms of the square of the Weyl tensor (3.5), the square
of the Ricci tensor, and the Gauß-Bonnet term (3.8). All couplings are dimensionless in d = 4,
[λ ] = [w] = [θ ] = 0. This gives a strong indication, that the theory is perturbatively renormalis-
able. Compared to the Einstein-Hilbert action, the loop diagrams do not introduce higher powers
of momenta and all divergences can be absorbed into already existing terms of the action. The
contributions stemming from the Einstein-Hilbert part in (3.11) are subleading for large momenta.

The parameterisation in (3.11) is very useful: the square of the Weyl tensor contributes only
to the transverse-traceless mode of the graviton propagator, while the square of the Ricci tensor
contributes only to the scalar mode1. The Gauß-Bonnet term does not contribute at all to any
graviton n-point function, since it is a topological invariant, δE/δgµν = 0. The transverse-traceless
mode of the graviton propagator has now the shape

Gtt ∼
1

p2 + a
M2

Pl
p4 =

1
p2 −

1

p2 +
M2

Pl
a

. (3.12)

We make an important observation: the coefficient in front of the second term is negative, i.e., it is
a ghost state spoiling unitarity. Even more severe, if the coupling of the higher-derivative term has
the wrong sign, then the ghost state also becomes tachyonic [117–119]. Typically any theory with
higher-order time derivatives features these ghost states at the classical level. They are known as
Ostrogradsky instabilities [120], see also [121, 122].

This does not yet seal the fate of perturbative quantum gravity, precisely because these are
classical instabilities. In (3.12), the bare graviton propagator is given and radiative correction
could change the shape of the propagator and cure the instabilities. In other words, unitarity is only
spoiled if the full quantum propagator contains a ghost state. We take a look at the beta function
to investigate this possibility. The one-loop beta functions are universal and not scheme dependent
since the couplings are dimensionless. They are given by [123–126]

(4π)2
βλ =−133

10
λ

2 , (3.13a)

(4π)2
βω =−25+1098ω +200ω2

60
λ , (3.13b)

(4π)2
βθ =

2
90

(56−171θ)λ . (3.13c)

1We discuss the decomposition of the graviton in (3.36).
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Eq. (3.13a) shows us that λ has an attractive Gaußian UV fixed point. Eq. (3.13b) is vanishing for
ω∗1 = −5.47 and ω∗2 = −0.0229, which are two non-Gaußian fixed points. From (3.13c), we read
off that θ ∗ = 0.327 is a fixed point. The most important information is the asymptotic freedom of
λ . This causes that all higher derivative terms become parametrically enhanced towards the UV,
see (3.11). This implies that all other operators have their canonical critical exponents, independent
on whether they have themselves a Gaußian or non-Gaußian UV fixed point. In consequence, the
ghost state displayed in (3.12) carries through to the quantum propagator and spoils unitarity at this
Gaußian fixed point. There are various attempts to safe the unitarity of the theory, for example, by a
different prescription of the propagator [127–129]. This comes at the cost of losing microcausality.

In summary, perturbative quantum gravity is either non-renormalisable or non-unitary, which
are are both unsatisfying prospects. In the following sections, we explore this picture with a non-
perturbative quantisation.

3.2 The idea of asymptotic safety

The conjecture of the asymptotic safety scenario is the existence of a non-Gaußian UV fixed
point, which renders the UV behaviour of quantum gravity finite. The idea was brought up by
Weinberg in 1979 [130]. There have been several work in 2+ ε dimensions [108–111] and in the
large-N expansion [131–133]. The pioneering work in four spacetime dimensions with the use of
the FRG stems from Reuter in 1996 [69] and thus the fixed point is often called the Reuter fixed
point.

A fixed point is defined as the root of the beta functions of the dimensionless couplings. We
use dimensionless couplings since those appear in the computation of cross-sections. We define the
dimensionless couplings by a rescaling with appropriate powers of the RG scale, for example GN =

g/k2 in case of the Newton coupling. The beta function of the dimensionless Newton coupling has
a part, which stems from the canonical mass dimension, and a part, which stems from quantum
fluctuations

βg ≡ ∂tg = ∂tGNk2 = 2g+ k2
∂tGN , (3.14)

see also the discussion in Sec. 2.4. The canonical running indicates that dimensionless Newton
coupling grows towards the UV without quantum fluctuations. The quantum fluctuations need to be
strong to compensate for the canonical running. We have the following picture in mind: Below the
Planck scale, all gravitational quantum fluctuations are strongly suppressed. Thus the dimensionful
Newton coupling is a constant, while the dimensionless Newton coupling rises quadratically with
the RG scale. Around the Planck scale, we have a transition period. Above the Planck, we reach the
asymptotically safe regime where the quantum fluctuations balance the canonical running and the
dimensionless Newton coupling becomes a constant. In turn, the dimensionful Newton coupling
goes to zero with k−2. This is displayed schematically in Fig. 7, where we plot the dimensionless
Newton coupling as g(k) = k2/(M2

Pl + k2/g∗). We denote the fixed-point value of the Newton
coupling by g∗, which we set to g∗ = 1 in Fig. 7. The picture for the other gravitational couplings,
such as the cosmological constant, is in straight analogy to that.

Predictivity In the perturbative quantisation of the Einstein-Hilbert action, we had to introduce
infinitely many counterterms and thus the theory was not predictive. How does this issue translate
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Figure 7: Sketch of the dimensionless and dimensionful Newton coupling, g and GN. The di-
mensionful Newton coupling is a constant in the IR with its known value and becomes
quadratically weaker above the Planck scale. The dimensionless Newton coupling in-
stead rises quadratically until the Planck scale and takes its fixed point value shortly
above the Planck scale.

to the non-perturbative picture? Here we have to count the number of UV attractive directions of
the non-perturbative fixed point. The UV attractive directions are characterised by the linearised
beta functions around the fixed point as discussed in Sec. 2.4. All UV attractive directions together
span the critical hypersurface that includes all trajectories that are attracted by the UV fixed point.
The dimension of the critical hypersurface corresponds to the number of required measurements to
fully determine the theory. The theory is predictive if this hypersurface is finite-dimensional. We
display the critical hypersurface schematically in Fig. 8.

The dimension of the critical hypersurface was investigated in many truncations of asymp-
totically safe quantum gravity. Usually two to four UV attractive directions are found, mostly
associated with

√
g,
√

gR,
√

gR2, and
√

gR2
µν . In particular, the first three operators are often found

to be UV relevant. More UV relevant directions appear in gravity-matter systems, for example the
operator Rφ 2 is a candidate since it is canonically marginal.

Most of these truncations are finite-dimensional and hence the demand that the UV critical
hypersurface is finite-dimensional is trivially fulfilled. Nonetheless, there is an important lesson:
the canonical mass dimension seems to remain a good guiding principle at the non-Gaußian fixed
point. We do not find operators that are canonically highly irrelevant but then become relevant due
to quantum fluctuation. This was demonstrated by several works that expanded the effective action
to high orders in the Ricci scalar or Ricci tensor [135–139]. This is by no means a trivial statement,
in particular, if the fixed point is highly non-perturbative. There are other hints that the Reuter
fixed point might be in the semi-non-perturbative region: they stem from ’effective universality’ of
different avatars of the Newton coupling [140, 141]. Lastly, the infamous Goroff-Sagnotti counter
term was included in [142] and turned out to be asymptotically safe and UV irrelevant.

Unitarity In quadratic gravity at the asymptotically free fixed point suffers from the lack of

29



P
o
S
(
M
o
d
a
v
e
2
0
1
9
)
0
0
5

FRG and Asymptotically Safe Quantum Gravity Manuel Reichert

g1
<latexit sha1_base64="8e9/hZhmJagKmHlVfUrm3njREDY=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGltoQ9lsN+3SzSbsToQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h88miTTjPsskYluh9RwKRT3UaDk7VRzGoeSt8LRzdRvPXFtRKIecJzyIKYDJSLBKFrpftDzetWaW3dnIMvEK0gNCjR71a9uP2FZzBUySY3peG6KQU41Cib5pNLNDE8pG9EB71iqaMxNkM9OnZATq/RJlGhbCslM/T2R09iYcRzazpji0Cx6U/E/r5NhdBnkQqUZcsXmi6JMEkzI9G/SF5ozlGNLKNPC3krYkGrK0KZTsSF4iy8vE/+sflV3785rjesijTIcwTGcggcX0IBbaIIPDAbwDK/w5kjnxXl3PuatJaeYOYQ/cD5/AF9OjWI=</latexit><latexit sha1_base64="8e9/hZhmJagKmHlVfUrm3njREDY=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGltoQ9lsN+3SzSbsToQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h88miTTjPsskYluh9RwKRT3UaDk7VRzGoeSt8LRzdRvPXFtRKIecJzyIKYDJSLBKFrpftDzetWaW3dnIMvEK0gNCjR71a9uP2FZzBUySY3peG6KQU41Cib5pNLNDE8pG9EB71iqaMxNkM9OnZATq/RJlGhbCslM/T2R09iYcRzazpji0Cx6U/E/r5NhdBnkQqUZcsXmi6JMEkzI9G/SF5ozlGNLKNPC3krYkGrK0KZTsSF4iy8vE/+sflV3785rjesijTIcwTGcggcX0IBbaIIPDAbwDK/w5kjnxXl3PuatJaeYOYQ/cD5/AF9OjWI=</latexit><latexit sha1_base64="8e9/hZhmJagKmHlVfUrm3njREDY=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUG9FLx4rGltoQ9lsN+3SzSbsToQS+hO8eFDx6j/y5r9x2+agrQ8GHu/NMDMvTKUw6LrfTmlldW19o7xZ2dre2d2r7h88miTTjPsskYluh9RwKRT3UaDk7VRzGoeSt8LRzdRvPXFtRKIecJzyIKYDJSLBKFrpftDzetWaW3dnIMvEK0gNCjR71a9uP2FZzBUySY3peG6KQU41Cib5pNLNDE8pG9EB71iqaMxNkM9OnZATq/RJlGhbCslM/T2R09iYcRzazpji0Cx6U/E/r5NhdBnkQqUZcsXmi6JMEkzI9G/SF5ozlGNLKNPC3krYkGrK0KZTsSF4iy8vE/+sflV3785rjesijTIcwTGcggcX0IBbaIIPDAbwDK/w5kjnxXl3PuatJaeYOYQ/cD5/AF9OjWI=</latexit>

g2
<latexit sha1_base64="IbS/G7lpS7tLh3EQ2y5Quf33PUw=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4KkkR1FvRi8eKxhbaUDbbTbp0swm7E6GU/gQvHlS8+o+8+W/ctjlo64OBx3szzMwLMykMuu63s7K6tr6xWdoqb+/s7u1XDg4fTZprxn2WylS3Q2q4FIr7KFDydqY5TULJW+HwZuq3nrg2IlUPOMp4kNBYiUgwila6j3v1XqXq1twZyDLxClKFAs1e5avbT1mecIVMUmM6npthMKYaBZN8Uu7mhmeUDWnMO5YqmnATjGenTsipVfokSrUthWSm/p4Y08SYURLazoTiwCx6U/E/r5NjdBmMhcpy5IrNF0W5JJiS6d+kLzRnKEeWUKaFvZWwAdWUoU2nbEPwFl9eJn69dlVz786rjesijRIcwwmcgQcX0IBbaIIPDGJ4hld4c6Tz4rw7H/PWFaeYOYI/cD5/AGDRjWM=</latexit><latexit sha1_base64="IbS/G7lpS7tLh3EQ2y5Quf33PUw=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4KkkR1FvRi8eKxhbaUDbbTbp0swm7E6GU/gQvHlS8+o+8+W/ctjlo64OBx3szzMwLMykMuu63s7K6tr6xWdoqb+/s7u1XDg4fTZprxn2WylS3Q2q4FIr7KFDydqY5TULJW+HwZuq3nrg2IlUPOMp4kNBYiUgwila6j3v1XqXq1twZyDLxClKFAs1e5avbT1mecIVMUmM6npthMKYaBZN8Uu7mhmeUDWnMO5YqmnATjGenTsipVfokSrUthWSm/p4Y08SYURLazoTiwCx6U/E/r5NjdBmMhcpy5IrNF0W5JJiS6d+kLzRnKEeWUKaFvZWwAdWUoU2nbEPwFl9eJn69dlVz786rjesijRIcwwmcgQcX0IBbaIIPDGJ4hld4c6Tz4rw7H/PWFaeYOYI/cD5/AGDRjWM=</latexit><latexit sha1_base64="IbS/G7lpS7tLh3EQ2y5Quf33PUw=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4KkkR1FvRi8eKxhbaUDbbTbp0swm7E6GU/gQvHlS8+o+8+W/ctjlo64OBx3szzMwLMykMuu63s7K6tr6xWdoqb+/s7u1XDg4fTZprxn2WylS3Q2q4FIr7KFDydqY5TULJW+HwZuq3nrg2IlUPOMp4kNBYiUgwila6j3v1XqXq1twZyDLxClKFAs1e5avbT1mecIVMUmM6npthMKYaBZN8Uu7mhmeUDWnMO5YqmnATjGenTsipVfokSrUthWSm/p4Y08SYURLazoTiwCx6U/E/r5NjdBmMhcpy5IrNF0W5JJiS6d+kLzRnKEeWUKaFvZWwAdWUoU2nbEPwFl9eJn69dlVz786rjesijRIcwwmcgQcX0IBbaIIPDGJ4hld4c6Tz4rw7H/PWFaeYOYI/cD5/AGDRjWM=</latexit>

g3
<latexit sha1_base64="H7LIhAVsiuTY9kvVpSedqI9HczM=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lUUG9FLx4rGltoQ9lsJ+nSzSbsboRS+hO8eFDx6j/y5r9x2+ag1QcDj/dmmJkXZoJr47pfTmlpeWV1rbxe2djc2t6p7u496DRXDH2WilS1Q6pRcIm+4UZgO1NIk1BgKxxeT/3WIyrNU3lvRhkGCY0ljzijxkp3ce+0V625dXcG8pd4BalBgWav+tntpyxPUBomqNYdz81MMKbKcCZwUunmGjPKhjTGjqWSJqiD8ezUCTmySp9EqbIlDZmpPyfGNNF6lIS2M6FmoBe9qfif18lNdBGMucxyg5LNF0W5ICYl079JnytkRowsoUxxeythA6ooMzadig3BW3z5L/FP6pd19/as1rgq0ijDARzCMXhwDg24gSb4wCCGJ3iBV0c4z86b8z5vLTnFzD78gvPxDWJUjWQ=</latexit><latexit sha1_base64="H7LIhAVsiuTY9kvVpSedqI9HczM=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lUUG9FLx4rGltoQ9lsJ+nSzSbsboRS+hO8eFDx6j/y5r9x2+ag1QcDj/dmmJkXZoJr47pfTmlpeWV1rbxe2djc2t6p7u496DRXDH2WilS1Q6pRcIm+4UZgO1NIk1BgKxxeT/3WIyrNU3lvRhkGCY0ljzijxkp3ce+0V625dXcG8pd4BalBgWav+tntpyxPUBomqNYdz81MMKbKcCZwUunmGjPKhjTGjqWSJqiD8ezUCTmySp9EqbIlDZmpPyfGNNF6lIS2M6FmoBe9qfif18lNdBGMucxyg5LNF0W5ICYl079JnytkRowsoUxxeythA6ooMzadig3BW3z5L/FP6pd19/as1rgq0ijDARzCMXhwDg24gSb4wCCGJ3iBV0c4z86b8z5vLTnFzD78gvPxDWJUjWQ=</latexit><latexit sha1_base64="H7LIhAVsiuTY9kvVpSedqI9HczM=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lUUG9FLx4rGltoQ9lsJ+nSzSbsboRS+hO8eFDx6j/y5r9x2+ag1QcDj/dmmJkXZoJr47pfTmlpeWV1rbxe2djc2t6p7u496DRXDH2WilS1Q6pRcIm+4UZgO1NIk1BgKxxeT/3WIyrNU3lvRhkGCY0ljzijxkp3ce+0V625dXcG8pd4BalBgWav+tntpyxPUBomqNYdz81MMKbKcCZwUunmGjPKhjTGjqWSJqiD8ezUCTmySp9EqbIlDZmpPyfGNNF6lIS2M6FmoBe9qfif18lNdBGMucxyg5LNF0W5ICYl079JnytkRowsoUxxeythA6ooMzadig3BW3z5L/FP6pd19/as1rgq0ijDARzCMXhwDg24gSb4wCCGJ3iBV0c4z86b8z5vLTnFzD78gvPxDWJUjWQ=</latexit>

Figure 8: Sketch of the critical hypersurface (purple) in theory space. The dimension of the critical
hypersurface determines the number of measurements needed to fully determine the
theory. Trajectories close to the critical hypersurface flow towards the surface in the IR.
The figure is taken from [134].

unitarity. Unitarity is one of the most difficult properties to access in asymptotically safe quantum
gravity. The graviton propagator contains all momentum powers since all operators compatible
with the symmetry have to be included. Thus one can naively think that this triggers ghost states
in the spirit of (3.12). As discussed above, unitarity is not a property of the bare propagator but of
the spectral function of the full quantum propagator. This is very hard to access and first attempts
have been made [122, 143–147]. So far no definite statement can be made whether asymptotically
safe quantum gravity is unitary or not, and it remains one of the most intriguing questions of this
approach. For a more detailed discussion on this topic see [148].

Program of asymptotic safety The (ideal) asymptotic safety program is given by the following
items (which is a subjective list by the author):

1. Find a fixed point that is well converged. This means that the UV relevant operators should
not change upon inclusion of new diffeomorphism invariant operators. This fixed point must
have phenomenological viable trajectories to the IR.

2. Determine the number of UV attractive operators at the fixed point and thus check if the
theory is predictive.

3. Find a trajectory that matches the known IR physics. This includes that the matter couplings
of the Standard Model are compatible with the asymptotically safe fixed point [149–156].

4. Analytically continue the full quantum n-point functions to obtain the spectral functions and
cross-sections. This gives insight if the theory is unitarity or not. For this task it is necessary
to keep the momentum dependence of the n-point function [140, 157–165]. The analytic
continuation itself is a very delicate task. We do not go into details here and simply refer to
the literature [166–169].
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5. Applications: find solutions to the quantum equations of motions that describe black holes
[170–181] or the evolution of the universe including inflation [43, 182–192].

This lists illustrates that finding a UV fixed point is only the first of many step. The asymptotic
safety program has already achieved partial results on all of the above points as indicated by the
references.

3.3 Diffeomorphism symmetry and gauge fixing

After this general idea of asymptotically safe quantum gravity, we now detailed the technical
implementation of diffeomorphism invariance and the corresponding gauge fixing. Diffeomor-
phism transformations are generated by the Lie derivative Lω with respect to a vector field ωµ .
For example, the Lie derivative acts on a scalar field φ by

Lωφ = ω
µ

∂µφ = ω
µ

∇µφ , (3.15a)

while it acts on vectors and two-tensors by

LωAµ = ω
ρ

∂ρAµ +Aρ∂µω
ρ = ω

ρ
∇ρAµ +Aρ∇µω

ρ , (3.15b)

LωTµν = ω
ρ

∂ρTµν +Tµρ∂νω
ρ +Tρν∂µω

ρ = ω
ρ

∇ρTµν +Tµρ∇νω
ρ +Tρν∇µω

ρ . (3.15c)

In all cases, the Lie derivative can be either represented as partial derivative or as covariant deriva-
tive. The Lie derivative of the metic is thus

Lωgµν = gµρ∇νω
ρ +gρν∇µω

ρ , (3.16)

where we used metric compatibility to get rid of one term. Any gravity action, like the Einstein-
Hilbert action (3.9) or the higher-derivative action (3.11), is invariant under the transformation

gµν −→ gµν +Lωgµν . (3.17)

In quantum gravity, it is necessary to introduce a background metric ḡµν and a corresponding
fluctuation field hµν about that background. Common choices are the linear split

gµν = ḡµν +hµν , (3.18)

or the exponential split [110, 112, 166, 193, 194]

gµν = ḡµρ(eh)
ρ

ν . (3.19)

Here, (eh)
ρ

ν = δ
ρ

ν + hρ

ν +
1
2 hρ

σ hσ
ν + . . . . The path integral in (3.1) is now performed over hµν .

Depending on the split, the measure term is modified, which can be taken into account by the
Jacobian of the transformation. Strictly speaking, we should distinguish between the field we
integrate over ĥµν and its expectation value 〈ĥµν〉= hµν . We will not make this distinction to keep
the notation light.

The split of the metric into a background and a fluctuation is necessary, such that we can
define a proper gauge fixing and a local coarse-graining procedure. How does the split affect the
diffeomorphism transformation in (3.17)? One can now construct two independent diffeomorphism
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transformation that both leave the action invariant. One is the quantum diffeomorphism transfor-
mation, which for the linear split reads

hµν −→ hµν +Lω(ḡµν +hµν) ,

ḡµν −→ ḡµν (3.20)

and the other is the background diffeomorphism transformation, in case of the linear split

hµν −→ hµν +Lωhµν ,

ḡµν −→ ḡµν +Lω ḡµν . (3.21)

We will see soon that the quantum diffeomorphism symmetry is going to be broken by the gauge
fixing, which turns it into a BRST symmetry [103, 104], and then further broken by the regulator.
The background diffeomorphism symmetry, on the other hand, is always going to be preserved. In
Sec. 2.7, we learned how symmetries are treated in the FRG: the broken symmetry is encoded in
a symmetry identity and restored at k = 0. The identities corresponding to the BRST or quantum
diffeomorphism symmetry are called (modified) Slavnov-Taylor identities [195, 196]. These iden-
tities encode physical diffeomorphism invariance. We detail them at the end of this section after
we have introduced the gauge fixing and the BRST transformations.

The metric split also introduces a new symmetry, the split symmetry, given by the transforma-
tion

g(ḡ,h)−→ g(ḡ+δ ḡ,h+δh) = g(ḡ,h) . (3.22)

We have δ ḡ = −δh with the linear split. This split symmetry is going to be broken by the gauge
fixing and the regulator. Looking back to Sec. 2.7, we first ignore the regulator contribution and
use (2.82) with G = δ ḡ+δh. This leads us to the Nielsen identity [197, 198] for the linear metric
split

NI =
δΓ

δ ḡµν

− δΓ

δhµν

−
〈[

δ

δ ḡµν

− δ

δhµν

]
(Sgf +Sgh)

〉
= 0 . (3.23)

This identity encodes the background independence of the effective action. At finite k, the regulator
contribution turns the Nielsen identity into a modified Nielsen identity. We use (2.86) and rewrite
the regulator part to obtain

mNI = NIk−
1
2

Tr
[

1√
ḡ

δ
√

ḡRk

δ ḡµν

Gk

]
= 0 . (3.24)

Here, Rk is the regulator and Gk = (Γ
(2)
k +Rk)

−1 is the full quantum propagator. The index k at NI
indicates the use of (3.23) with Γk instead of Γ. The (modified) Nielsen identity tells us, that the
(scale-dependent) effective action cannot be written as a function of the full metric, gµν = ḡµν +hµν

in case of the linear split. This result seems unsettling at first but we expected it from the discussion
in Sec. 2.7. We should interpret in the following way: although we write the scale-dependent
effective action as a function of ḡ and h separately, the modified Nielsen identity tells us how these
two fields are related. In this manner, the modified Nielsen identity reduces the dependence on two
fields to one field and in the end encodes the background independence of the theory.
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Let us go back to the gauge fixing. The graviton two-point function is not invertible on-shell,
just as the gauge two-point function in a not-gauge-fixed (non-)Abelian gauge theory. The gauge
fixing removes the redundant degrees of freedom and makes the two-point function invertible on-
shell. The gauge-fixing action is given by

Sgf =
1

2α

∫
d4x
√

ḡ ḡµνFµFν , (3.25)

where Fµ is a gauge fixing condition linear in the fluctuation field. This is analogous to QED
and QCD, where, for example, the gauge-fixing condition is F = ∂µAµ in Lorentz gauge. The
gauge fixing parameter α describes how sharply the gauge-fixing condition is implemented. The
limit α → 0 is called the Landau limit and is often preferred since it implements the gauge-fixing
condition with a delta function and thus fully disentangles the transverse and longitudinal parts of
the field. Furthermore, if one considers α as a quantity with an RG running, then α → 0 is a fixed
point of the RG flow [199].

In gravity, the gauge fixing condition Fµ is a one-parameter family, if one restricts the gauge-
fixing condition to be linear in the derivative. Higher-derivative gauge fixing can be useful, in
particular in higher-derivative gravity. The gauge-fixing condition is

Fµ = ∇̄
αhαµ −

1+β

4
∇̄µhν

ν , (3.26)

with the gauge fixing parameter β . The parameter β can be chosen arbitrarily except for β = 3
(in d = 4 spacetime dimensions) where the gauge-fixing condition becomes incomplete. Common
choices are β = 1, which corresponds to harmonic gauge, and β = −1, which was denoted the
’physical gauge’ [200, 201]. The ghost action corresponding to the gauge-fixing condition is given
by

Sgh =
∫

d4x
√

ḡc̄µMµνcν , (3.27)

where Mµν is the Faddeev-Popov operator. The latter is computed as

Mµν =
∂Fµ

∂hαβ

∂

∂ων
Lωgαβ = ∇̄

ρ(gµν∇ρ +gρν∇µ)−
1+β

2
ḡσρ

∇̄µgνρ∇ρ . (3.28)

Here the bar indicates that the covariant derivatives are constructed with respect to the background
metric ḡµν . This equation is linear in hµν , which is apparent from is representation in terms of the
Lie derivative. The ghost field cµ is a four-vector and thus the ghost action removes 8 degrees of
freedom in total. Tn the end, from the 10 degrees of freedom of hµν , two remain, which are the
two polarisations of the graviton.

The gauge fixing turns the quantum diffeomorphism symmetry (3.20) into a BRST symmetry.
The BRST transformation s is given by

shµν = Lc(ḡµν +hµν) = ∇̄µcν + ∇̄νcµ +Lchµν , sḡµν = 0 ,

scµ = cρ∇̄
ρcµ , sc̄µ =−Fµ

α
. (3.29)
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Here, Fµ transforms trivially under the BRST transformation, sFµ = 0. The gauge-fixed action is
invariant under this transformation, s(S+Sgf +Sgh) = 0. Note, that, restricted to ḡµν and hµν , this
transformation is identical to the quantum diffeomorphism symmetry (3.20). Furthermore, s is a
nilpotent operator with s2 = 0.

On the level of the effective action, the BRST invariance is encoded in the Slavnov-Taylor
identities. For the Slavnov-Taylor identities, it is convenient to include a source term for the BRST
variations of the field in the generating functional. We write this source term as Qasφa and φa is
understood to include all fields in (3.29). The Slavnov-Taylor identity is then given by

STI =
δΓ

δQa
δΓ

δφa
= 0 . (3.30)

This is the symmetry identity at k = 0 without regulator contribution. At finite k the Slavnov-Taylor
identity turns into a modified Slavnov-Taylor identity, which reads

mSTI = STIk−2Rab
k

δ 2Γk

δQbδφc
Gk,ca = 0 . (3.31)

Note, that the indices a,b,c sum over the different fields but also include the Lorentz or gauge
indices of the fields summed over. This identity encodes the quantum diffeomorphism invariance of
the scale-dependent effective action. Together with the modified Nielsen identity (3.24), it encodes
the full symmetry constraints of the theory. For further information and implementation of these
symmetry identities, see [35, 69, 140, 202–214].

3.4 Wetterich equation and background-field approximation

So far we have not written down the Wetterich equation for quantum gravity. As a first step,
we specify the regulator function (2.20) to the field content in gravity. In pure gravity have the
fluctuation field of the graviton hµν and the ghost fields cµ and c̄µ . This can be easily augmented
with matters fields. For pure gravity, the regulator reads

∆Sk =
1
2

∫
d4x
√

ḡhµνRk,h[ḡ]µνρσ hρσ +
∫

d4x
√

ḡ c̄µRk,c[ḡ]µνcν . (3.32)

As discussed in the last section, the regulator does not respect neither the split symmetry (3.22)
nor the quantum diffeomorphism invariance (3.20), but it is background diffeomorphism invariant
(3.21). Without a background metric ḡµν , we would have been able to write down a bilinear in the
metric field.

The graviton and the ghost regulator have four and two open indices, respectively, and we are
free to choose the tensor structure of the regulator, as long as it implements a proper regularisation.
For example, a simple choice in momentum space is Rµνρσ

k,h = ḡµρ ḡνσ p2r(p2/k2), with some shape
function r. Often, the regulator is chosen proportional to the respective two-point function

Rµνρσ

k,h =
1√

ḡ(x)ḡ(y)

δ 2Γk[ḡ,φ = 0]
δhµν(x)δhρσ (y)

, Rµν

k,c =
1√

ḡ(x)ḡ(y)

δ 2Γk[ḡ,φ = 0]
δcµ(x)δ c̄ν(y)

. (3.33)

The graviton two-point function depends on momentum, curvature invariants, and couplings, such
as the cosmological constant. One can chose to include curvature invariants and the cosmological
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constant into the regulator. In [215], this was categorised with type I, type II, and type III regula-
tor. The type I regulator contains only the bare Laplacian, i.e., only the momentum. The type II
regulator contains also curvature terms, while the type III regulator includes everything. Usually,
regulators of type I and II are preferred.

Now, we are ready to adapt the Wetterich equation (2.34) to quantum gravity

∂tΓk[ḡ,φ ] =
1
2

Tr

[
1

Γ
(0,2)
k +Rk

∂tRk

]
hh

−Tr

[
1

Γ
(0,2)
k +Rk

∂tRk

]
c̄c

. (3.34)

Here we have introduced the multi-field φ = (hµν ,cµ , c̄µ) that includes all fluctuations fields. It is
important to note that it is the second derivative of the fluctuation field that enters on the right-hand
side of the Wetterich equation. Setting up the Wetterich equation requires to invert the graviton
two-point function. This inversion on general curved backgrounds is non-trivial. Is it therefore
important to set up a tensor basis, which is for example the transverse-traceless York decomposition
[216] or the Stelle decomposition [117]. The decompositions consist of a separation of the trace
and the longitudinal parts of the fluctuation field

hµν = htt
µν +hL

µν +
1
d

ḡµνh . (3.35)

Here h is the trace h = ḡµνhµν and htt
µν is transverse ∇̄µhtt

µν = 0 and traceless ḡµνhtt
µν = 0. The lon-

gitudinal part is decomposed further by introducing a transverse vector field ξ and a corresponding
scalar σ . The final result for the fluctuation field reads

hµν = htt
µν + ∇̄µξν + ∇̄νξµ +

(
∇̄µ∇̄ν −

1
d

ḡµν ∆̄

)
σ +

1
d

ḡµνh . (3.36)

Here the bar indicates that the covariant derivatives are constructed with respect to the background
metric ḡµν and ∆̄ = −∇̄2 is the Laplacian. We have split the unconstrained spin-2 field hµν into
constrained fields of spin-2 htt

µν , spin-1 ξ and spin-0 σ and h. The graviton two-point function is
now written in terms of a matrix, which simplifies the inversion

Γ
(0,2)
hh =


Γ
(0,2)
htthtt 0 0 0
0 Γ

(0,2)
ξ ξ

0 0

0 0 Γ
(0,2)
hh

1
2 Γ

(0,2)
hσ

0 0 1
2 Γ

(0,2)
σh Γ

(0,2)
σσ

 . (3.37)

In case of the flat background, the inversion is now trivial. For a non-flat background one has to
pay attention since curvature invariants and derivatives are not always commuting.

A very common approximation to the Wetterich equation is the background field approxima-
tion. It corresponds to an ansatz for the scale-dependent effective action of the type

Γk[ḡ,φ ] = Γk[g]+Sgf[ḡ,φ ]+Sgh[ḡ,φ ] . (3.38)

In other words, the effective action depends only on one metric field gµν and the difference be-
tween background metric and fluctuation field is only resolved in the ghost and gauge-fixing parts.
The background-field approximation reduces the dependence on the background metric and the
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fluctuation field down to only one field. Thus the resulting scale-dependent action is seemingly
diffeomorphism invariance. However, this is only a seeming property since the approximation nei-
ther fulfils the modified Nielsen identity (3.24) nor the modified Slavnov-Taylor identity (3.31),
and in consequence, the approximation is neither background independent nor quantum diffeomor-
phism invariant. Nonetheless, it is a very useful approximation as it tries to project the flow on the
physically important degrees of freedom and dramatically decreases the size of the theory space,
which simplifies the computation significantly. In the next section, we employ the background field
approximation on the Einstein-Hilbert truncation.

3.5 Einstein-Hilbert truncation

We now present a simple example of a quantum gravity computation with the FRG. This
computation is similar to the original computation by Reuter [69]. We use the Einstein-Hilbert
truncation in the spin-2 approximation, which means that we only include contributions from the
transverse-traceless mode of the graviton, see (3.36). In many cases, this is a sufficient approxi-
mation that contains the most important physical features. The transverse-traceless mode is gauge-
independent and invertible by itself. Thus, we do neither need to specify the gauge-fixing condition
nor to introduce ghost fields. Furthermore, we employ the background-field approximation (3.38).
The Wetterich equation simplifies to

∂tΓk[g] =
1
2

Tr

 1

Γ
(2)
k,tt [g]+Rk,tt

∂tRk,tt

 , (3.39)

with the Einstein-Hilbert ansatz

Γk[g] = 2κ
2Zk

∫
d4x
√

g [−R+2Λk] . (3.40)

Here, we have defined

κ
2 = (32πGN)

−1 , GN,k = GNZ−1
k . (3.41)

The scale dependence of the Newton coupling GN,k is encoded in the wave-function renormalisation
Zk. GN is the bare Newton coupling. We choose the regulator to be proportional to the two-point
function without including the cosmological constant and curvature terms

Rk,µνρσ [∆] = Γ
(2)
k,µνρσ

∣∣∣
Λk=R=0

· r
(

∆

k2

)
, (3.42)

where ∆ =−∇2 is the Laplacian. For the shape function r, we take a Litim-type cutoff

r(x) =
(

1
x
−1
)

Θ(1− x) . (3.43)

With these choices and approximations, we have fully determined our computation.
We first evaluate the left-hand side of the Wetterich equation (3.39). We apply a scale deriva-

tive to (3.40), which acts on the Newton coupling GN,k (or, equivalently, on Zk) and the cosmolog-
ical constant Λk. This yields

∂tΓ
grav
k = 2κ

2
∫

d4x
√

g [−(∂tZk)R+2(∂tZkΛk)]
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= 2Zkκ
2
∫

d4x
√

g
[
ηgR+2

(
k2

∂tλk +2Λk−ηgΛk
)]

. (3.44)

Here, we have introduced the anomalous dimension ηg = −(∂tZk)/Zk = −∂t lnZk as well as the
dimensionless cosmological constant λk = Λkk−2. We have one term proportional to

√
gR and one

proportional to
√

g, which we will also encounter on the right-hand side of the Wetterich equation
together with higher-order curvature terms. The comparison of left- and right-hand side then leads
to expressions for the anomalous dimension ηg and the beta function for the cosmological constant
βλ = ∂tλk. The beta function for the dimensionless Newton coupling, gk = GN,kk2 = GNk2/Zk,
follows directly from the anomalous dimension

βg = ∂tgk = (2+ηg)gk . (3.45)

We turn to the right-hand side of the Wetterich equation (3.39). We first compute the graviton
propagator Gk = (Γ

(2)
k +Rk)

−1 from the Einstein-Hilbert truncation (3.40). The Einstein-Hilbert
ansatz for the graviton two-point function Γ

(2)
k is obtained by two functional derivatives of (3.40)

with respect to the metric field gµν . Without the background-field approximation, we would take
the derivatives with respect to the fluctuation field hµν . The two-point function has four open
indices and depends explicitly on the curvature invariants R, Rµν , and Rµνρσ . We can simplify
the situation by exploiting the freedom of choosing the background metric before applying the
background-field approximation, i.e., before setting the fluctuation to zero. We choose a maximally
symmetric space

Rµν =
1
d

gµνR , Rµνρσ =
1

d(d−1)
(gµρgνσ −gµσ gνρ)R . (3.46)

As mentioned before, we restrict ourselves to the spin-2 approximation, i.e., we are only interested
in the transverse-traceless part. With these simplifications, the second variation of the effective
action can be computed as

δ
2
Γk,tt =

1
2

κ
2Zk

∫
d4x
√

gδgtt
µν

[
∆−2Λk +

2
3

R
]

δgtt,µν , (3.47)

and consequently

Γ
(2)
k,tt =

Zk

32π

(
∆−2Λk +

2
3

R
)

δ
(4)(x1− x2) . (3.48)

From now on, we leave the delta function implicit. The propagator of the transverse-traceless
spin-2 mode is thus given by

Gk,tt =
32π

Zk

1
∆(1+ r(∆))−2Λk +

2
3 R

, (3.49)

and the scale derivativ of the regulator reads

∂tRk,tt =
Zk

32π
∆

(
∂tr
(

∆

k2

)
−ηgr

(
∆

k2

))
. (3.50)
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We now have to consider the traces on the right-hand side of (3.34). These are traces over the Lapla-
cian in curved space and they can be evaluated with heat-kernel techniques or spectral methods.
We give a very short description of these techniques in App. A. The result of these traces includes
term proportional to

√
g and

√
gR, which are the ones we are interested in. The comparison of

these terms with the left-hand side (3.44) yields the beta functions for the Newton coupling and
the cosmological constant as discussed above. The traces also yield higher-order curvature terms,
which signal that the flow creates all terms compatible with the symmetry. We neglect those terms
here, but one should include them in an improved truncation. We plug (3.49) and (3.50) into (3.39)
and now we need to evaluate the trace over the Laplacian

Tr

 1

Γ
(2)
k,tt +Rk

∂tRk

= Tr

[
∆(∂tr( ∆

k2 )−ηgr( ∆

k2 ))

∆(1+ r( ∆

k2 ))−2Λk +
2
3 R

]
(3.51)

= Tr
[

z(−2zr′(z)−ηgr(z))
z(1+ r(z))−2λk

]
− 2

3
R
k2 Tr

[
z(−2zr′(z)−ηgr(z))

(z(1+ r(z))−2λk)
2

]
.

Here we have introduced the dimensionless Laplacian z = ∆/k2 and also switched to the dimen-
sionless version of the cosmological constant λk = Λk/k2. With the heat-kernel formula (A.4) from
App. A we obtain for the first term in (3.51)

Tr
[

z(−2zr′(z)−ηgr(z))
z(1+ r(z))−2λk

]
=

1
(4π)2

(
B0(z)Q2

[
z(−2zr′(z)−ηgr(z))

z(1+ r(z))−2λk

]

+B2(z)Q1

[
z(−2zr′(z)−ηgr(z))

z(1+ r(z))−2λk

]
+O(R2)

)

=
1

(4π)2

∫
d4x
√

g
[

5Φ
1
2(−2λk)−

5
6

R
k2 Φ

1
1(−2λk)

]
. (3.52)

In the last step we have expressed the result in terms of the threshold functions Φ
p
n , which are

defined by

Φ
p
n(ω) =

1
Γ(n)

∫
∞

0
dzzn−1 z(−2zr(z)−ηgr(z))

(z(1+ r(z))+ω)p =
1

Γ(n)
1

(1+ω)p

(
2
n
− ηg

n(n+1)

)
. (3.53)

In the last step, we have evaluated the threshold functions for the Litim-type cutoff (3.43). The use
of threshold functions allows us to keep the result independent of the shape function and thus it is
easier scan over different shape functions. With the Litim-type cutoff, (3.52) becomes

5Φ
1
2(−2λk)−

5
6

R
k2 Φ

1
1(−2λk) = 5

1− ηg
6

1−2λk
− 5

6
R
k2

2− ηg
2

1−2λk
. (3.54)

In straight analogy, we evaluate the second term in (3.51)

Tr

[
z(−2zr′(z)−ηgr(z))

(z(1+ r(z))−2λk)
2

]
=

1
(4π)2 B0(z)Q2

[
z(−2zr′(z)−ηgr(z))
(z(1+ r(z))−2λk)2

]
+O(R)

=
5

(4π)2

∫
d4x
√

gΦ
2
2(−2λk)
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=
5

(4π)2

∫
d4x
√

g
1− ηg

6
(1−2λk)2 . (3.55)

Note, that this term is multiplied with −2
3 R in (3.51) and thus we do not compute the term of order

R. We are now ready to compare the terms
∫

x
√

g and
∫

x
√

gR from the left-hand and the right-hand
side. Let us start with

∫
x
√

gR, where we collect (3.44) on the left-hand side and (3.52), (3.55) on
the right-hand side. This gives us the anomalous dimension

ηg =−
5

6π
gk

(
2

1− 1
6 ηg

(1−2λk)2 +
1− 1

4 ηg

1−2λk

)
. (3.56)

The anomalous dimension ηg depends on itself: it also enters on the right-hand side in the loop
contributions. This feature reflects that the Wetterich equation is a one-loop equation, but takes the
dressed propagators and vertices as input. We solve (3.56) for ηg

ηg =
− 5gk

6π(1−2λk)
− 5gk

3π(1−2λk)2

1− 5gk
24π(1−2λk)

− 5gk
18π(1−2λk)2

=
60gk(2λk−3)

5gk(6λk−7)+72π(1−2λk)2 , (3.57)

and now it becomes manifest that ηg receives all contributions from all orders in perturbation
theory. By comparing the terms proportional to

∫
x
√

g on the left-hand side, (3.44), and the right-
hand side, (3.52), we obtain the flow equation for the cosmological constant

∂tλk =−4λk +
λk

gk
∂tgk +

5
4π

gk
1− 1

6 ηg

1−2λk
, (3.58)

which also depends on ηg and consequently also receives contribution from all orders in perturba-
tion theory. Together with the beta function of the Newton coupling, which is fully determined by
the anomalous dimension,

∂tgk = (2+ηg)gk . (3.59)

we have all beta function ready. Already in this simple truncation we find a non-Gaußian fixed
point at the coupling values

(g∗, λ
∗) = (0.86, 0.18) . (3.60)

The critical exponents, which are the eigenvalues of the stability matrix, see (2.46), are given by

θ1,2 = 2.9±2.6 i . (3.61)

The real part of both critical exponents is positive, which implies that the fixed point is fully UV
attractive. The critical exponents have an imaginary part, which causes a spiralling of the RG
flow around the fixed point. The full phase diagram is depicted in Fig. 9, where we can clearly
observe this behaviour of the RG flow. Also the Gaußian fixed point (g∗, λ ∗) = (0, 0) is a fixed
point of the beta functions. There is exactly one trajectory, which connects these two fixed points
and it is marked in green in Fig. 9. On this trajectory, the dimensionless Newton coupling runs
for small k with k2 and thus the dimensionful Newton coupling is a constant, just as depicted in
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Figure 9: Phase diagram of quantum gravity in the spin-2 approximation of the Einstein-Hilbert
truncation, i.e., by the beta functions given in (3.57), (3.58), and (3.59). The Gaußian
and the UV fixed point (3.60) are indicated with a blue dot. The green line is the tra-
jectory that connects these two fixed points. The red line indicates where the anomalous
dimension is diverging (3.62), which is thus a singularity in the beta functions. The UV
fixed point is fully attractive and the trajectories have a spiralling behaviour, which is
described by the positive sign and the imaginary part of the critical exponents (3.61).

Fig. 7. The dimensionful and the dimensionless cosmological constant go to zero on this trajectory.
On trajectories that go to λ → −∞ and g→ 0, we find that the dimensionless Newton coupling
also runs for small k with k2 but the dimensionless cosmological constant runs as k2 and thus the
dimensionful cosmological constant becomes a negative constant. For a positive non-vanishing
cosmological constant, we need to find a trajectory that runs to the non-trivial IR fixed point at
λ = 1

2 and g = 0, which is difficult due to singularities in the beta functions. For work in this
direction, see [146, 157, 158, 161, 217, 218]. The phase diagram has cuts where the beta functions
are diverging. These are marked with red lines in Fig. 9. The anomalous dimension ηg (3.57) is
diverging at the values

gsing =−
72π

(
4λ 2−4λ +1

)
5(6λ −7)

. (3.62)

For g→ 0, the singularity goes to λ = 1
2 as expected from the pole of the propagator.

3.6 Outlook

In the last section, we have obtained the phase diagram of quantum gravity in a very simple
truncation that only includes the cosmological constant and the Newton coupling. Already in this
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simple truncation, we found an attractive UV fixed point and a trajectory that connects it to a
classical IR regime. A lot of progress has happened since this truncation was implemented for the
first time in [69]. Even within the Einstein-Hilbert truncation, a lot of research had been done. This
ranged from investigations of gauge and parameterisation dependence [194, 219–222] and regulator
dependence [223–226] to a better inclusion of the ghost sector via ghost anomalous dimensions
[227–229]. Beyond Einstein-Hilbert, a lot of progress has been made in the inclusion of higher-
dimensional operators and truncations that include a function f (R) [126, 135–139, 215, 230–257].
This progress has led to more trust in the existence of the UV fixed point and to the strong hint that
the UV critical hypersurface is indeed finite-dimensional.

There are several issues, which we have discussed far too little in these lecture notes. The first
is how we can fulfil the symmetry identities of quantum gravity. Most of the above-listed works
use the background-field approximation (3.38), which has the nice property of being seemingly
diffeomorphism invariant. However, the background-field approximation violates the symmetry
identities, namely the mSTI (3.31) and the mNI (3.24). For a true diffeomorphism invariant theory,
one has to go beyond the background-field approximation. One approach is to tackle this issue is
to disentangle contributions from the background metric and the fluctuation field. This implies that
one has to solve a theory with two independent metric fields and then afterwards solve the mNI at
one scale k. This approach has recently received a lot of attention and high-orders in the fluctuation
field expansion have been computed [141, 157–159, 161, 205, 206, 251, 258–263].

The second issue is the interplay of matter and gravity. Asymptotically safe quantum gravity
is in the very fortunate position that the inclusion of matter fields can be implemented in a standard
QFT way. Thus the impact of matter fields on the running of the gravitational couplings was
investigated already very early on. The key question of these investigations is for which matter
content the UV fixed point exists. Several works have pointed out potential bounds on the matter
content, while other works argued against it. So far, no conclusive result was obtained and it
remains an interesting topic of research [140, 150–153, 162, 252, 256, 257, 263–295].
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A. Heat-kernel techniques

We want to evaluate the trace of a function that depends on the Laplace operator on a curved
background. The function can depend on couplings and background curvature but we assume that
it does not depend on covariant derivatives. In general, such a trace is defined as sum/integral over
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the eigenvalues of the Laplace operator,

Tr f (∆) = N ∑

∫
`

ρ(`) f (λ (`)) . (A.1)

Here, λ (`) are the spectral values, ρ(`) are the multiplicities or the spectral density and N is some
normalisation factor. A simple example is the flat background where (A.1) turns into a standard
momentum integral. For non-flat backgrounds a standard example is the four-sphere with constant
background curvature r = R̄

k2 > 0. There the spectrum of the scalar Laplacian is discrete and the
spectral values and the multiplicities are given by

λ (`) =
`(3+ `)

12
r , ρ(`) =

(2`+3)(`+2)!
6`!

, (A.2)

where ` takes integer values ` ≥ 0. The normalisation N is the inverse volume of the four sphere
N =V−1 = k4r2

384π2 . In summary, we can evaluate (A.1) for constant positive curvature in terms of an
infinite series

Tr f (∆) =
k4r2

384π2

∞

∑
`=0

(2`+3)(`+2)!
6`!

f
(
`(3+ `)

12
r
)
, (A.3)

which is called a spectral sum. When the curvature is negative similar formulas hold, but the
spectrum of the Laplacian is continuous. The resulting integrals are called spectral integrals.

The heat-kernel method can be understood as curvature expansion about the flat background.
The idea is to separately treat the dependence of the spectrum of the operator and the dependence
on the function f . The master formula for the heat-kernel techniques is

Tr f (∆) =
1

(4π)
d
2

∞

∑
n=0

B2n(∆)Q d
2−n[ f (t)] , (A.4)

where the Bn are the heat-kernel coefficients of the Laplace operator ∆ and the Qn are defined by

Qn[ f (x)] =
1

Γ(n)

∫
dxxn−1 f (x) . (A.5)

A very common derivation of this equation uses the Laplace transformation

f (∆) =
∫

∞

0
dse−s∆ f̃ (s) . (A.6)

Applying this to (A.1) leads to

Tr f (∆) =
∫

∞

0
ds f̃ (s)Tre−s∆ , (A.7)

where the last term is precisely the trace of the heat kernel. For this trace the expansion is well
established

Tre−s∆ =
1

(4π)
d
2

∞

∑
n=0

s
n−d

2 Bn(∆) , (A.8)
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Table 2: Heat kernel coefficients for transverse-traceless tensors (TT), transverse vectors (TV) and
scalars (S) on S4.

TT TV S
trb0 5 3 1

trb2 −5
6 R 1

4 R 1
6 R

and the coefficients Bn are again the heat-kernel coefficients as in (A.4). Using this in (A.7) results
in

Tr f (∆) =
1

(4π)
d
2

∞

∑
n=0

Bn(∆)
∫

∞

0
dss

n−d
2 f̃ (s)

=
1

(4π)
d
2

∞

∑
n=0

1
Γ(d−n

2 )
Bn(∆)

∫
∞

0
dt t

d−n
2 −1 f (t)

=
1

(4π)
d
2

∞

∑
n=0

Bn(∆)Q d−n
2
[ f (t)] . (A.9)

Here we have used the relation
∫

s s−x f̃ (x) = 1
Γ(x)

∫
z zx−1 f (z) and further used the definition of Qn,

see (A.5). Lastly, we use that the odd coefficients B2n+1 are vanishing and we arrive precisely at
(A.4).

These reformulations have brought us the advantage that we have separated the dependences
of the function f and of the Laplace operator ∆. The Qn[ f ] are in general easy to determine either
numerically or even analytically. We are left with determining the heat-kernel coefficients Bk(∆),
which was already done for many different Laplacians in the literature [296–298]. We do not go
into details here and simply state the results, if we choose the sphere as background, where the
results tremendously simplify. The heat-kernel coefficients are often expressed as

Bn(∆) =
∫

ddx
√

g trbn(∆) , (A.10)

and we display the coefficients bn for the sphere in Tab. 2.
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