

Charm at KEDR

V. V. Anashin^a, O. V. Anchugov^a, A. V. Andrianov^a, K. V. Astrelina^a, V. M. Aulchenko^{*a,b*}, E. M. Baldin^{*a,b*}, G. N. Baranov^{*a,c*}, A. K. Barladyan^{*a*}, A. Yu. Barnyakov^{*a,b,c*}, M. Yu. Barnyakov^{*a,b,c*}, S. E. Baru^{*a,b*}, I. Yu. Basok^{*a*}, E. A. Bekhtenev^a, O. V. Belikov^a, D. E. Berkaev^a, A. E. Blinov^{a,b}, V. E. Blinov^{a,b,c}, M. F. Blinov^{*a*}, A. V. Bobrov^{*a*,*b*}, V. S. Bobrovnikov^{*a*,*b*}, A. V. Bogomyagkov^{*a*,*b*}, D. Yu. Bolkhovityanov^{*a*}, A. E. Bondar^{*a*,*b*}, A. R. Buzykaev^{*a*,*b*}, P. B. Cheblakov^{*a*,*b*}, V. L. Dorohov^{*a,c*}, S. I. Eidelman^{*a,b,d*}, F. A. Emanov^{*a,b*}, V. V. Gambaryan^{*a*}, S. A. Glukhov^{*a,b*}, D. N. Grigoriev^{*a,b,c*}, V. V. Kaminskiy^{*a,b*}, S. E. Karnaev^{*a*}, S. V. Karpov^{*a*}, G. V. Karpov^{*a*}, K. Yu. Karukina^{*a,c*}, D. P. Kashtankin^{*a*}, P. V. Kasyanenko^{*a,c*}, A. A. Katcin^{*a,b*}, T. A. Kharlamova^{*a,b,**}, V. A. Kiselev^{*a*}, S. A. Kononov^{*a,b*}, K. Yu. Kotov^{*a*}, A. A. Krasnov^{*a*}, E. A. Kravchenko^{*a,b*}, V. N. Kudryavtsev^{*a,b*}, V. F. Kulikov^{*a,b*}, G. Ya. Kurkin^{*a,c*}, I. A. Kuyanov^{*a*}, E. B. Levichev^{*a,c*}, P. V. Logachev^{*a*}, D. A. Maksimov^{*a,b*}, Yu. I. Maltseva^{*a*}, V. M. Malyshev^{*a*}, A. L. Maslennikov^{*a,b*}, O. I. Meshkov^{*a,b*}, S. I. Mishnev^{*a*}, I. I. Morozov^{*a,b*}, I. A. Morozov^{*a*}, N. Yu. Muchnoi^{*a,b*}, D. A. Nikiforov^{*a*}, S. A. Nikitin^{*a*}, I. B. Nikolaev^{*a,b*}, I. N. Okunev^{*a*}, A. P. Onuchin^{*a,b*}, S. B. Oreshkin^{*a*}, V. V. Oreshonok^{*a*}, A. A. Osipov^{*a,b*}, I. V. Ovtin^{*a,b*}, A. V. Pavlenko^{*a*}, S. V. Peleganchuk^{*a,b*}, V. V. Petrov^{*a*}, P. A. Piminov^a, S. G. Pivovarov^{a,c}, N. A. Podgornov^a, V. G. Prisekin^{a,b}, O. L. Rezanova^{a,b}, A. A. Ruban^{a,b}, G. A. Savinov^a, A. G. Shamov^{a,b}, L. I. Shekhtman^a, D. A. Shvedov^a, B. A. Shwartz^{a,b}, E. A. Simonov^a, S. V. Sinyatkin^a, A. N. Skrinsky^a, A. V. Sokolov^{*a,b*}, E. V. Starostina^{*a,b*}, D. P. Sukhanov^{*a*}, A. M. Sukharev^{*a,b*}, A. A. Talyshev^{*a,b*}, V. A. Tayursky^{*a,b*}, V. I. Telnov^{*a,b*}, Yu. A. Tikhonov^{*a,b*}, K. Yu. Todyshev^{*a,b*}, A. G. Tribendis^{*a,c*}, G. M. Tumaikin^{*a*}, Yu. V. Usov^{*a*}, A. I. Vorobiov^{*a*}, V. N. Zhilich^{*a,b*}, A. A. Zhukov^{*a*}, V. V. Zhulanov^{*a,b*}, A. N. Zhuravlev^{*a,b*} ^aBudker Institute of Nuclear Physics 11, akademika Lavrentieva prospect, Novosibirsk, 630090, Russia ^bNovosibirsk State University 2, Pirogova street, Novosibirsk, 630090, Russia ^cNovosibirsk State Technical University

20, Karl Marx prospect, Novosibirsk, 630092, Russia

^dLebedev Institute RAS

Leninsky pr. 53, 119991, Moscow, Russia

E-mail: t.a.kharlamova@inp.nsk.su.edu

© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).

^{*}Speaker

We review the recent results obtained by the KEDR experiment in the charmonium energy range. They include the measurements of J/ψ meson total and partial widths and exclusive branching fractions, study of D⁺ and D⁰ meson masses and R between 1.8 and 7.0 GeV.

10th International Workshop on Charm Physics (CHARM2020) 31 May – 4 June, 2021 Mexico City, Mexico - Online

1. Introduction

We report recent results from the KEDR detector at the VEPP-4M e^+e^- collider in the Budker Institute in Novosibirsk. VEPP-4M collider was designed to operate in the beam energy from 1 to 5 GeV [1]. One of the main features of the VEPP-4M collider is possibility of precise energy determination with two methods: resonant depolarization method [2] and infrared light Compton backscattering method [3]. The KEDR detector is described in [4].

2. Measurements of J/ψ meson total and partial widths

Analysis on J/ψ meson widths measurement was based on the dataset with integrated luminosity of 230 nb⁻¹ at 11 energy points. That allowed to fit the resonant shape and determine non-resonant background contributions. To measure the width hadronic and electronic channels were considered simultaneously. We performed combined fit of the data and determined Γ_{ee} ·B_{ee}(J/ ψ), Γ_{ee} ·B_{hadrons}(J/ ψ) and Γ_{ee} (J/ ψ) [5].

The electronic width obtained in our analysis $\Gamma_{ee} = 5.550 \pm 0.056 \pm 0.089$ keV agrees well with the world average [6]. Figure 1 shows its comparison with the previous measurements [7-11] and lattice QCD calculations [12,13]. The values of $\Gamma_{ee}(J/\psi)$ in BESIII [7], CLEO [8] and BaBar [9] experiments were calculated from $\Gamma_{ee} \cdot B_{\mu\mu}(J/\psi)$ measured in the radiation process $e^+e^- \rightarrow \mu^+\mu^-\gamma$ with the J/ ψ meson decaying to muon pair. Our measurement of leptonic width is direct measurement as the result from BES [11]. In the analysis we considered the inclusive hadronic channel as well as leptonic processes to extract partial widths of the J/ ψ meson.

Figure 1: Comparison of the KEDR results with the previous measurements

Our result for the Γ_{ee} ·B_{hadrons}(J/ ψ) value (Fig. 2) is consistent with and four times more precise than the previous direct measurement in the hadronic channel [11]. Figure 2 shows Γ_{ee} ·B_{hadrons}(J/ ψ) and Γ_{ee} ·B_{ee}(J/ ψ) comparison with the previous measurements [11, 14-16].

Figure 2: Measurements of $\Gamma_{ee} \cdot B_{hadrons}(J/\psi)$ and $\Gamma_{ee} \cdot B_{ee}(J/\psi)$

As a continuation of this analysis the total and hadronic widths were also measured [5]. The total width obtained is a direct measurement involving data only from KEDR experiment. New result on $\Gamma_{hadr}(J/\psi)$ is consistent with and 4 times more precise that the previous direct measurement of the hadronic width by BES collaboration [11]. In Figure 3 we present measured $\Gamma(J/\psi)$ and $\Gamma_{hadrons}(J/\psi)$ values with those obtained in previous experiments.

Figure 3: Measurements of $\Gamma(J/\psi)$ and $\Gamma_{hadrons}(J/\psi)$

3. Decays $J/\psi \rightarrow 2(\pi^+\pi^-)\pi^0$, $K^+K^-\pi^+\pi^-\pi^0$, $2(\pi^+\pi^-)$, $K^+K^-\pi^+\pi^-$

KEDR collaboration is also measuring branching fractions of $J/\psi \rightarrow 2(\pi^+\pi^-)\pi^0$, $K^+K^-\pi^+\pi^-\pi^0$, $2(\pi^+\pi^-)$, $K^+K^-\pi^+\pi^-$. Our preliminary results on inclusive decay modes compared with previous experiments are shown on Figure 4. The analysis uses the statistics of about 1.3 pb⁻¹ at the peak of the J/ ψ resonance that corresponds to 5.2 million of produced J/ ψ mesons and 82.3 nb⁻¹ for background estimation.

Figure 4: Summary of preliminary results on branching fractions of J/ψ meson inclusive decay modes

4. D meson masses

Neutral and charged D mesons are the ground states in the family of open charm mesons. Measurement of their masses provides a mass scale for the heavier excited states. D-meson mass is important for DD* threshold determination. This knowledge affects understanding of the $\chi_{c1}(3872)$ (X(3872)) nature [17].

Measurement of D meson masses is performed using the near-threshold $e^+e^- \rightarrow D\overline{D}$ production with full reconstruction of one of the D mesons. Neutral D mesons are reconstructed in the K⁻ π^+ final state, charged D mesons are reconstructed in the K⁻ $\pi^+\pi^+$ final state. For selections beam – constrained mass $M_{bc} = \sqrt{E_{beam}^2 - (\sum_i \vec{p}_i)^2}$ and center-of-mass (CM) energy difference $\Delta E = \sum_i \sqrt{(m_i^2 + p_i^2)} - E_{beam}$ are calculated in every event, where E_{beam} is the energy of colliding beams in the CM frame, m_i and \vec{p}_i are the masses and momenta of the D meson decay products. Additional kinematic parameter $\Delta |p|$ determined as the difference of the absolute values of momenta for D decay products in the CM frame is used for D⁰ selection. For the signal events the parameter ΔE is close to zero. In our analysis, we select a relatively wide region of ΔE and M_{bc} close to M_D , then perform a fit of the event density with D mass as one of the parameters, with the background contribution taken into account. Results of selection of the D^0 and D^{\pm} meson candidates are shown in Figures 5 and 6 correspondingly.

Figure 6: Selection of D^{\pm} candidates

D-meson masses were measured at KEDR at 2010 [18]. But now new analysis is ongoing with increased statistics, and we aim to increase accuracy about 20% compared to previous measurement from KEDR experiment.

4. R measurements between 1.8 and 7.0 GeV

R is the ratio of the radiatively corrected total cross section of electron-positron annihilation into hadrons and muon pairs. R is crucial in various precision tests of Standard Model – determination of the running strong coupling constant $\alpha_s(s)$ and heavy quark masses, evaluation of the hadronic contribution to the anomalous magnetic moment of the muon $(g-2)_{\mu}$ and calculation of the value of the electromagnetic fine structure constant at the Z⁰ peak $\alpha(M_Z^2)$ [19].

On Figure 6 the most recent measurement of R are presented in the energy range between 1.8 and 3.8 GeV. R was measured at KEDR in this energy range at 13 equidistant points between 1.84 - 3.05 GeV [20]. The achieved accuracy is about or better that 3.9% at the most of energy points. For the energies above J/ ψ resonance there were 9 equidistant points with total error of about or better that 2.6% [21].

Figure 6: R measurement between 1.8 and 3.8 GeV

New data taking was done in the energy range from 4.7 to 7 GeV with integrated luminosity 13.7 pb⁻¹. The range is interesting because there are no published data between 5 GeV and 6.96 GeV [22, 23]. VEPP-4M collected statistics at 17 equidistant points in this energy range. Expected total uncertainty is expected to be about 3% with systematical uncertainty of about 2.5%.

5. Summary

New precise measurement of J/ ψ total and leptonic width is presented. KEDR measured the R values at 22 center-of-mass energies between 1.84 and 3.72 GeV. Analysis of data in the energy range between 4.56 and 6.96 GeV was started, expected accuracy is less than 3%. New analyzes of the D-meson masses and branching fractions of $J/\psi \rightarrow 2(\pi^+\pi^-)\pi^0$, $K^+K^-\pi^+\pi^-\pi^0$, $2(\pi^+\pi^-)$, $K^+K^-\pi^+\pi^-$ are ongoing.

References

- V. V. Anashin et al., VEPP-4M Collider: Status and Plans, Proc. of EPAC 98*, Stockholm (1998) 400.
- [2] A. D. Bukin et al., Absolute calibration of beam energy in the storage ring, Φ -meson mass measurement, Preprint IYF-75-64, 1975B.
- [3] G.Ya. Kezerashvili et al., A Compton source of high-energy polarized tagged gamma-ray beams. The ROKK-1M facility, Nucl. Instrum. Meth. B145 (1998) 40.
- [4] V. V. Anashin et al., KEDR collaboration, *The KEDR detector*, Phys. of Part. and Nucl. 44 (2013) 657.

- [5] V. V. Anashin et al., KEDR collaboration, Measurement of Γ_{ee}(J/ψ) with KEDR detector, JHEP 05 (2018) 119, arXiv:1801.01958. V. V. Anashin et al., KEDR collaboration, Addendum to: Measurement of Γ_{ee}(J/ψ) with KEDR detector, JHEP 07 (2020) 112.
- [6] P.A. Zyla et al. (Particle Data Group), *Review of Particle Physics*, Prog. Theor. Exp. Phys. 2020, 083C01 (2020) and 2021 update.
- [7] M. Ablikim et al., BES Collaboration, *Measurement of the leptonic decay width of J/\psi using initial state radiation*, Phys. Lett. B. 761 (2016) 98.
- [8] G. S. Adams et al., CLEO Collaboration, *Measurement of* $\Gamma_{ee}(J/\psi)$, $\Gamma_{tot}(J/\psi)$, and $\Gamma_{ee}(\psi(2S)/\Gamma_{ee}(J/\psi))$, Phys. Rev. D. 73 (2006) 051103.
- [9] B. Aubert et al., BaBar Collaboration, J/ψ production via initial state radiation in $e^+e^- \rightarrow \mu^+\mu^-\gamma$ at an e^+e^- center-of-mass energy near 10.6 GeV, Phys. Rev. D. 69 (2004) 011103.
- [10] V. V. Anashin et al., KEDR Collaboration, *Measurement of* $\Gamma_{ee}(J/\psi) \cdot Br(J/\psi \to e^+e^-)$ and $\Gamma_{ee}(J/\psi) \cdot Br(J/\psi \to \mu^+\mu^-)$, Phys. Lett. B. 685 (2010) 134.
- [11] J. Z Bai et al., BES Collaboration, A measurement of J/ψ decay widths, Phys. Lett. B. 355 (1995) 374.
- [12] G. C. Donald et al., HPQCD Collaboration, *Precision tests of the J/\psi from full lattice QCD: Mass, leptonic width, and radiative decay rate to \eta_c, Phys. Rev. D. 86 (2012) 094501.*
- [13] D. Becirevic and F. Sanfilippo, *Lattice QCD study of the radiative decays J/\psi \rightarrow \eta_c \gamma and h_c \rightarrow \eta_c \gamma, JHEP 01 (2013) 28.*
- [14] C. Bacci, R. Baldini-Celio, et al., Multi-Hadronic Decays and Partial Widths of the J/psi (3100) Resonance Produced in e⁺e⁻ Annihilation at ADONE, Phys.Lett.B 58 (1975) 471-474.
- [15] B. Bartoli et al., Measurement of the J/psi (3100) Decay Widths Into e⁺e⁻ and mu⁺mu⁻ at ADONE, Lett.Nuovo Cim. 14 (1975) 73-81.
- [16] R. Brandelik et al., DASP Collaboration, Results from DASP on e⁺e⁻ annihilation between 3.1 GeV and 5.2 GeV, Z.Phys.C 1 (1979) 233-256.
- [17] Yu.S. Kalashnikova, A.V. Nefediev, *X*(*3872*) *in the molecular model*, Phys. Usp. 62 (2019) 6, 568-595
- [18] V. V. Anashin et al., KEDR collaboration, *Measurement of* D^0 and D^+ meson masses with the KEDR Detector, Phys.Lett.B 686 (2010) 84-90.
- [19] K.Yu. Todyshev, Measuring the inclusive cross section of e⁺e⁻ annihilation into hadrons in the preasymptotic energy range, Phys.Usp. 63 (2020) 9, 929-939.
- [20] V.V. Anashin, et al., KEDR collaboration, *Measurement of R between 1.84 and 3.05 GeV at the KEDR detector*, Phys.Lett. B 770 (2017) 174.
- [21] V.V. Anashin, et al., KEDR collaboration, *Precise measurement of Ruds and R between 1.84 and 3.72 GeV at the KEDR detector*, Phys.Lett. B 788 (2019) 42.
- [22] J. Z. Bai et al., BES Collaboration, Measurements of the Cross Section for e⁺e⁻→Hadrons at Center-of-Mass Energies from 2 to 5 GeV, Phys. Rev. Lett. 88, 101802.
- [23] D. Besson et al., CLEO Collaboration, *Measurement of the total hadronic cross section* in e^+e^- annihilation below 10.56 GeV, Phys. Rev. D 76, 072008.