
P
o
S
(
C
H
A
R
M
2
0
2
0
)
0
2
0

QCD-based estimate of direct CP asymmetry
in charm decays

Alexander Khodjamiriana,∗

aCenter for Particle Physics Siegen (CPPS),
Theoretische Physik 1, Universität Siegen,
D-57068 Siegen, Germany

E-mail: khodjamirian@physik.uni-siegen.de

I discuss the calculation of the direct CP-asymmetry in D → π+π− and D → K+K− decays with
the method of QCD light-cone sum rules. The main result is the upper limit for the difference
of the two asymmetries ���∆adir

CP
��� < 0.020 ± 0.003% which is significantly smaller than the recent

measurement of this quantity by the LHCb collaboration.

*** 10th International Workshop on Charm Physics (CHARM2020), ***
*** 31 May - 4 June, 2021 ***
*** Mexico City, Mexico - Online ***

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:khodjamirian@physik.uni-siegen.de
https://pos.sissa.it/


P
o
S
(
C
H
A
R
M
2
0
2
0
)
0
2
0

QCD-based estimates of direct CP asymmetry... Alexander Khodjamirian

1. Introduction

The CP asymmetry measured by LHCb collaboration [1] in the single Cabibbo suppressed
decays D → π+π− and D → K+K− remains a challenge for the theory. A quantitative estimate of
this asymmetry in the Standard Model (SM) involves hadronic matrix elements with two energetic
mesons in the final state that are not accessible yet with the lattice QCD methods. Hence, even
approximate estimates of the CP asymmetry obtained using other QCD based methods are useful,
in order to trace or at least constrain the possible beyond SM contributions (see e.g., [2]).

Here I will discuss a calculation [3] of the direct CP-asymmetry in D → π+π− and D → K+K−

decays with the method of light-cone sum rules (LCSRs). As shown in section 2, for each of these
decays it is sufficient to calculate the CKM suppressed part of the decay amplitude with the penguin
topology. In section 3, I briefly explain the idea of the LCSR method in a simplified version with a
two-point correlation function. Section 4 presents the actual LCSR for the penguin hadronic matrix
element, obtained with a more involved procedure using the three-point correlation function. We
transfer to charm decays the method of LCSRs for B → ππ decays initiated in [4] and developed
further in [5, 6]. Our numerical result for the upper bound of the difference of direct CP asymmetries
∆aCP is compared with the LHCb measurement [1]. In conclusion, I discuss the uncertainties and
perspectives of our method.

2. Relating direct CP-asymmetry to the penguin amplitude

At the quark level, the single Cabibbo suppressed decays D → ππ and D → KK̄ are generated
by the effective Hamiltonian

He f f =
GF
√

2

{
λd

(
c1 Od

1 + c2 Od
2
)
+ λs

(
c1 Os

1 + c2 Os
2
)
− λb

∑
i=3,...,6,8g

ciOi

}
, (1)

where the operators Od
1 =

(
ūΓµd

) (
d̄Γµc

)
, Od

2 =
(
d̄Γµd

)
(ūΓµc) are multiplied with the Wilson

coefficients c1,2 and in Os
1 , Os

2 the d quark is replaced by s quark. Here, λq = VuqV ∗cq, (q = d, s, b)
are the relevant combinations of the CKM parameters.

Separating the contributions of the Od
1,2 and O

s
1,2 operators and introducing a compact notation

Oq ≡
∑
i=1,2

ciO
q
i (q = d, s),

we have for the decay amplitudes 1 (in the units of GF/
√

2):

A(D0 → π+π−) = λd〈π+π− |Od |D0〉 + λs〈π
+π− |Os |D0〉 , (2)

A(D0 → K+K−) = λs〈K+K− |Os |D0〉 + λd〈K+K− |Od |D0〉 . (3)

Note that both decay amplitudes contain hadronic matrix elements with "penguin topology”

〈π+π− |Os |D0〉 ≡ Ps
ππ , 〈K+K− |Od |D0〉 ≡ Pd

KK , (4)

1 In what follows, we neglect the contributions of the effective operators Oi≥3 since ci≥3 � c1,2.
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in which the quark operator contains a q̄q pair with a flavour q = s or d absent in the valence content
of the initial and final hadronic states. This definition is somewhat more general than specifying
certain quark-flow diagrams (quark topologies).

Furthermore, using the CKM unitarity in SM:
∑

q=d,s,b λq = 0 , we find it convenient to
eliminate λd = −(λs + λb) , so that the amplitudes (2) and (3) are written in the form

A(D0 → π+π−) = −λsAππ

{
1 +

λb
λs

(
1 + rπ exp(iδπ )

)}
, (5)

A(D0 → K+K−) = λsAKK

{
1 −

λb
λs

rK exp(iδK )
}
, (6)

with the notation

Aππ = 〈π
+π− |Od |D0〉 − 〈π+π− |Os |D0〉 , AKK = 〈K+K− |Os |D0〉 − 〈K+K− |Od |D0〉 , (7)

and

rπ =
�����
Ps
ππ

Aππ

�����
, rK =

������

Pd
KK

AKK

������
, δπ(K ) = arg[Ps(d)

ππ (KK )] − arg[Aππ (KK )] . (8)

In (5) and (6) only the contributions proportional to λb, with Im(λb) , 0, contain the CP-violating
phase. The conditions for a nonvanishing direct CP asymmetry are clearly fulfilled: both decay
amplitudes consist of two parts with different weak and strong phases. Defining this asymmetry as

adir
CP ( f ) =

Γ(D0 → f ) − Γ(D̄0 → f̄ )
Γ(D0 → f ) + Γ(D̄0 → f̄ )

f = π+π−, K+K− , (9)

and using (5) and (6), we obtain:

adir
CP (K+K−) =

−2rbrK sin δK sin γ
1 − 2rbrK cos γ cos δK + r2

b
r2
K

, (10)

adir
CP (π+π−) =

2rbrπ sin δπ sin γ
1 + 2rb cos γ(1 + rπ cos δπ ) + r2

b
(1 + 2rπ cos δπ + r2

π )
, (11)

were the ratio of the CKM matrix elements is parameterized as

λb
λs
≡ rbe−iγ, rb =

�����
VubV ∗

cb

VusV ∗cs

�����
. (12)

Furthermore, it is important that |λb | � |λs,d |, hence both equations (10) and (11) can be expanded
in rb retaining the first power. As well known, a more "clean" observable (after the time integration)
than the individual CP asymmetries (10) and (11) is their difference:

∆adir
CP = adir

CP (K+K−) − adir
CP (π+π−)

= −2rb sin γ(rK sin δK + rπ sin δπ ) +O(r2
b) , (13)

where the hadronic input is reduced to the two ratios and two phase differences defined in (8). At
first sight, it seems that we have unnecessarily complicated our task defining the combinationsAππ
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π+(q)

π+(p−k)

π
−

(−
q
)

π
+

(p−
k
)

Figure 1: The diagram illustrating OPE for the correlation function (14) for the spacelike (left) and timelike
(right) invariant variable P2 = (p− k − q)2. Shown are the s-quark loop and the virtual c quark (double line).
The wavy lines denote external momenta (p− q) and k flowing, respectively, to the interpolating current and
from the weak operator vertex.

and AKK of the hadronic matrix elements. In fact, the key point is that, due to the smallness of
|λb |, from (5) and (6) we have, to a good approximation,

−λsAππ ' A(D0 → π+π−) , λsAKK ' A(D0 → K+K−) .

Thus, the denominators of the ratios rK and rπ are obtained from the experimentally measured
widths of these two decays. The estimate of direct CP asymmetries (10) and (11) in SM is then
reduced to the calculation of the two hadronic matrix elements Ps

ππ and Pd
KK defined in (4).

3. Outline of the LCSR method

These hadronicmatrix elementswere calculated in [3], employing theLCSRmethod formulated
and applied to the B → ππ decay in [4–6]. Let me first outline a somewhat simplified version of
that method, in which the starting object is a two-point correlation function. Considering e.g., the
D → ππ decay, we introduce:

Πππ ((p − q)2, P2) = i
∫

d4x e−i(p−q)x〈π+(p − k) |T {Os (0) j (D)
5 (x)}|π+(q)〉 , (14)

where j (D)
5 = mc c̄iγ5u is the D0-meson interpolating current 2. Its product with the four-quark

effective operator is sandwiched between the initial and final on-shell pion states, so that (p− k)2 =

q2 = m2
π . Note that, as explained in detail in [4], an artificial four-momentum k is added, flowing

from the weak operator vertex. The invariant variables (p− q)2 and P2 = (p− k − q)2 are spacelike
and large,

|P2 |, |(p − q)2 | � Λ2
QCD (15)

2 The idea to describe a nonleptonic decay amplitude of heavy meson using a two-point correlator and OPE goes
back to [7]
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and for simplicity p2 = 0, k2 = 0 are chosen. In this region of invariant variables the propagating c
quark is far off shell and the operator product expansion (OPE) near the light-cone x2 ∼ 0 is valid
for (14), starting from the bilocal light-quark-antiquark operator, schematically

T {Os (0) j (D)
5 (x)} = CΓ (x2)ū(x)Γu(0) + . . . , (16)

where the ellipsis denotes all other operators and Γ denotes the relevant Dirac structure. Using (16),
we reduce (14) to a convolution

Πππ ((p − q)2, P2) = Π
(OPE)
ππ ((p − q)2, P2)

= i
∫

d4x e−i(p−q)xCΓ (x2)〈π+(p − k) |T {ū(x)Γu(0)}|π+(q)〉 + . . . .(17)

Diagrammatically, it is shown in Fig. 1, where the short-distance part contains the s-quark loop and
c-quark propagator. The long-distance part emerges as a pion-to-pion matrix element of a bilocal
quark-antiquark operator. In the local limit , x → 0, this matrix element reduces to a certain pion
form factor at spacelike momentum, P2 < 0.

Let us assume that we are able to obtain Πππ ((p − q)2, P2) from the OPE (17), computing the
short distance part perturbatively and combining it with a known parameterization of the hadronic
matrix element. The latter is a process independent quantity, hence, it is conceivable that it can
be determined independently, e.g. inferred from a dedicated LCSR 3 . Then, the next step is
an analytical continuation of the correlation function (14) from large spacelike to large timelike
values of P2, more specifically to P2 = m2

D , so that the invariant mass of the dipion state is equal
to the D-meson mass, while the spacelike variable (p − q)2 remains fixed. We encounter the
vacuum-to-dipion matrix element

Πππ ((p − q)2,m2
D) = i

∫
d4x e−i(p−q)x〈π+(p − k)π−(−q) |T {Os (0) j (D)

5 (x)}|0〉 . (18)

The timelike and spacelike asymptotics of the same correlation function coincide, hence from (17)
we have:

Πππ ((p − q)2,m2
D) ' Π(OPE )

ππ ((p − q)2, P2 = m2
D) . (19)

Note that a complex phase can be generated by the continuation of the OPE result, in our case,
e.g., due to the discontinuity of s-quark loop in the timelike region. That this phase reproduces the
strong phase of the final state dipion interaction is a rather strong assumption. A weaker version
of (19) is the equality of the absolute values of both sides. Another form of the relation between
timelike and spacelike asymptotics emerges if we write down dispersion relations in the variable
P2 for both sides of (17). Equating them at large P2 → −∞ yields the asymptotic equality of the
hadronic and OPE spectral densities: ImΠππ ((p − q)2, s) ' ImΠ(OPE )

ππ ((p − q)2, s) at s → ∞,
which is a manifestation of the local quark-hadron duality. To demonstrate that the approximation
(19) is valid for simpler hadronic matrix elements such as the pion electromagnetic form factor, we
refer to [9], where the absolute values of the pion timelike and spacelike form factors (the former
measured and the latter calculated from a dedicated LCSR) are compared. We observe that local

3 Note that by its structure the long distance part in (17) resembles matrix elements determining the generalized
parton distributions of the pion, see e.g. the review [8].
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duality works at large dipion invariant masses, starting from 2.5 - 3.0 GeV, that is, in the ballpark
of the D meson mass.

The last step is to employ the dispersion relation for the amplitude Πππ ((p − q)2,m2
D) in the

variable (p − q)2. Inserting the total set of hadronic states with D-meson quantum numbers, we
obtain:

Πππ ((p − q)2,m2
D) =

fDm2
D〈π

+(p)π−(−q) |Os |D(p − q)〉

m2
D − (p − q)2

+

∞∫
sh

ds
ρ(D)
h

(s)

s − (p − q)2 , (20)

where the ground-state contribution contains the D → ππ matrix element of Os multiplied by
the D-meson decay constant and ρ(D)

h
(s) denotes the hadronic spectral density of excited and

continuum states. Importantly, due to the choice P2 = (p − q − k)2 = (p − q)2 = m2
D , the fictitious

momentum k vanishes in the pole term . Matching this dispersion relation to the OPE and applying
the (semi-local) quark-hadron duality in the D-meson channel:

∞∫
sh

ds
ρ(D)
h

(s)

s − (p − q)2 =
1
π

∞∫
s0

ds
ImΠ(OPE )

ππ (s,m2
D)

s − (p − q)2 , (21)

we obtain, after the standard Borel transformation (p − q)2 → M2, the LCSR for the D → ππ

amplitude with penguin topology:

Ps
ππ =

em
2
D/M

2

fDm2
D

1
π

sD0∫
m2

b

ds e−s/M
2
ImΠ(OPE )

ππ (s,m2
D) . (22)

Replacing in the correlation function (17) π → K and Os → Od, we repeat the same procedure
and obtain the LCSR for the penguin amplitude Pd

KK .
The procedure based on the two-point correlation function was presented here mainly to

illustrate two main elements of the LCSR method for weak nonleptonic decays: the transition to
timelike region and the sum rule in the D meson channel. The actual calculation of D → ππ

amplitudes with penguin topology in [3] essentially uses both these elements, however, starts from
a three-point correlation function, following [4], and, more specifically , using the calculation
of B → 2π amplitudes with the c-quark penguin topology [5]. The additional operator in the
correlation function is the pion interpolating current. It is needed because the pion-to-pion matrix
element entering OPE such as the one in (17) is not directly accessible. One calculates this matrix
element using an additional QCD sum rule in the pion channel.

Before we turn to this calculation in more details, let me parenthetically mention that the two-
point correlation function was employed in [6] to obtain LCSR for the annihilation contribution
with hard-gluon exchange in B → ππ decays. In this case the pion-to-pion matrix element was
factorized into two light-cone distribution amplitudes of the pion convoluted with perturbatively
calculated short-distance part.
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4. Penguin amplitudes from LCSR

As explained in the previous section, to access the penguin amplitude Ps
ππ in D → π+π− decay,

we introduce the three-point vacuum-to-pion correlation function

Fα(p, q, k) = i 2
∫

d4x e−i(p−q)x
∫

d4y e−i(p−k)y〈0|T { j (π)
α5 (y)Os (0) j (D)

5 (x)}|π+(q)〉

= F ((p − k)2, (p − q)2, P2)(p − k)α + . . . , (23)

where j (π)
α5 = ūγαγ5d is the pion interpolating current andwe isolate the relevant invariant amplitude.

The light-cone OPE of this function and of the analogous one for D → K+K− (obtained replacing
d → s, s → d and π → K in the above) are accessible in terms of the pion and, respectively, kaon
DAs of the growing twist, similar to the simpler correlation functions used to determine the D → π

and D → K form factors (see e.g. [10] ). This expansion is valid in the region (15), assuming that
the new variable (p − k)2 is also spacelike and large. Transforming the four-quark operators with a
colour Fierz transformation:

c1Os
1 + c2Os

2 = 2c1Õs
2 +

( c1
3
+ c2

)
Os

2 , Õs
2 =

(
s̄Γµ

λa

2
s
) (

ūΓµ
λa

2
c
)
, (24)

we realize that the colour-octet operator provides the dominant contribution. Hence, up to NLO
corrections, Ps

ππ = 2c1〈π
+π− |Õs

2 |D
0〉, and, analogously, Pd

KK = 2c1〈K+K− |Õd
2 |D

0〉. The relevant
OPE diagrams are presented and discussed in detail in [3] (see also [5]), They are reduced to the
short-distance parts (loop and propagators) convoluted with the pion DAs of growing twist and
multiplicity. In particular, the s-quark pair with a small virtuality, emitted from the weak vertex is
not described by the loop diagram, but forms a part of four-particle pion DAs. Such contributions
are suppressed by inverse powers of large scales and are neglected.

The OPE result for the correlation function (23) is equated to the dispersion relation in the vari-
able (p − k)2. Furthermore, using the quark-hadron (semilocal) duality we isolate the contribution
of the pion. After Borel transformation, (p − k)2 → M

′2, we obtain

Πππ ((p − q)2, P2) =
(
−i
fπ

)
1
π

sπ0∫
0

ds e−s/M
′2
ImsF (OPE)

ππ (s, (p − q)2, P2) , (25)

where, as usual in the sum rules for a heavy-meson to pion transitions, the chiral symmetry is
adopted with a massless pion. The above sum rule yields the pion-to-pion correlation function
defined in (14) in the spacelike region (15). Accordingly, the subsequent steps for this correlation
function repeat the ones described in the previous section. The resulting LCSR for Ps

ππ has the
same form as (22) but with a double integral and double imaginary part in the variables (p − k)2,
(p − q)2. Explicit expressions of this sum rule and its analog for Pd

KK are given in [3].

5. Results and discussion

The numerical analysis of LCSRs for the hadronic matrix elements Ps
ππ and Pd

KK needs inputs
of three types: (1) the QCD parameters such as αs, the quark masses mc and ms, (hence, we can

7
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assess the SU (3) f l-symmetry violation), whereas mu = md = 0; (2) the set of pion and kaon DAs
of twist 2,3 and, finally (3) the Borel parameter intervals and effective thresholds in channels of
the pion (M ′ and sπ0 , sK0 ) and D-meson (M and sD0 ). The adopted values of all these parameters,
including also the effective coefficient c1, can be found in [3]. Our final numerical results obtained
from LCSR are

GF
√

2
|Ps
ππ | = (1.96 ± 0.23) × 10−7GeV ,

GF
√

2
|Pd

KK | = (2.86 ± 0.56) × 10−7GeV , (26)

The quoted uncertainties are only parametrical. Using experimentally measured branching fractions
[11] of D0 → π+π− and D0 → K+K−, we obtain

rπ =
|Ps
ππ |

|Aππ |
= 0.093 ± 0.011 , rK =

|Pd
KK |

|AKK |
= 0.075 ± 0.015 .

The direct CP asymmetries are obtained using the CKM parameter averages from [11]: rb sinγ =
0.64× 10−3. The resulting upper limits on the direct asymmetries and their difference (independent
of strong phases) are

���a
dir
CP (π−π+)��� < 0.012 ± 0.001%, ���a

dir
CP (K−K+)��� < 0.009 ± 0.002%,

���∆adir
CP

��� < 0.020 ± 0.003% . (27)

The latter turns out to be substantially smaller than the most recent measurement by LHCb collab-
oration [1]:

∆adir
CP = (−0.154 ± 0.029) . (28)

Leaving aside this tension and its interpretation (see e.g. [2]), let us discuss the accuracy of our
prediction and the perspectives of improving it.

The accuracy of LCSR, (apart from the input parameter variation within the adopted intervals)
is determined by the missing higher-twist terms (starting from twist 4). In future, it is possible to
add them to OPE, but they are usually small, as e.g., in the LCSRs for D → π, K form factors. The
O(α2

s) corrections not included in our calculation are probably also small, but technically difficult to
compute. Furthermore, since we used analytical expressions from [5], certain terms ofO(sπ,K0 /m2

D)
are neglected, restoring them demands dedicated calculation. It is however not conceivable that
adding higher twists, NLO terms and neglected power corrections to the LCSR will shift the result
in (27) by a large factor.

The potentially most important source of uncertainty not fully accounted in (27) is the use of
local quark-hadron duality. The timelike scale m2

D might still be somewhat small for the onset of
asymptotics, and an enhancement due to intermediate scalar resonances f0(JP = 0+) decaying to
ππ and KK̄ is not excluded (see e.g. [12]). One possibility to study the effect of resonances is to
match the LCSR calculation at spacelike P2 to the dispersion relation saturated by resonances. This
will introduce a certain model dependence 4. Another perspective is to extend the applications of
the LCSR method to other hadronic decays of bottom and charmed hadrons, e.g. we plan to use it
for the two-body decays of heavy baryons [14].
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