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We review heavy quark flavor and spin symmetries, their exploitation in heavy meson effective
theories and the flavored couplings of charmed and light mesons in the definition of their effective
Lagrangians. We point out how nonperturbative continuum QCD approaches based on Dyson-
Schwinger and Bethe-Salpeter equations can be used to calculate strong and leptonic decays of
open-charm mesons and heavy quarkonia. The strong decay D∗ → Dπ serves as a benchmark,
as it is the only physical open-charm observable that can be related to the effective Lagrangian’s
couplings. Nonetheless, a quantitative comparison of D∗Dπ, ρDD, ρD∗D and ρD∗D∗ couplings
for a range of off-shell momenta of the ρ-meson invalidates SU(4)F symmetry relations between
these couplings. Thus, besides the breaking of flavor symmetry by mass terms in the Lagrangians,
the flavor-symmetry breaching in couplings and their dependence on the ρ-meson virtuality
cannot be ignored. We also take the opportunity to present new results for the effective J/ψDD

and J/ψD∗D couplings. We conclude this contribution with a discussion on how the description
of pseudoscalar and vector D, Ds , B and Bs meson properties can be drastically improved with a
modest modification of the flavor-dependence in the Bethe-Salpeter equation.
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1. Introduction

Heavy flavor physics has been an important and very active field of particle physics for most
of the past three decades and is posed to remain a formidable source of new discoveries. Most
efforts have been dedicated to the study of weak B-meson decays and to establishing experimental
evidence for direct and/or indirect (in oscillation) CP-violation. In the 2000s, the BaBar experiment
at the Stanford Linear Accelerator Center (SLAC) and the Belle Experiment at the High Energy
Accelerator Research Organization (KEK), both electron-positron colliders with the center of mass
energy tuned to the Υ(4S) resonance, were very successful in observing a large number of CP-
violating processes in B decays. In the following decade dedicated experiments were pursued by
the LHCb experiment with the Large Hadron Collider (LHC) at CERN. The new generations of
detectors at the LHC provided hitherto unprecedented luminosities, which led to the discovery of
CP violation in Bs decays [1] and most recently CP violation was reported in D0 → K−K+ and
D0 → π−π+ decays [2].

These important experimental efforts by BaBar and Belle, and nowadays by the LHCb and
Belle II collaborations, have strongly improved our understanding of CP-violating mechanisms.
Much of our current knowledge about the electroweak sector of the Standard Model will serve as
a guideline to interpret the weak interactions of any new particles to be discovered. On the other
hand, the contributions of the strong force to heavy meson decay amplitudes are still the major
source of uncertainty in this field. That is to say, theoretical approaches to weak decays based
on perturbative Quantum Chromodynamics (QCD), such as heavy quark effective field theory and
associated factorization theorems, provide the means to systematically integrate out energy scales in
the perturbative domain. This yields approximations of the decay amplitudes in terms of products
of hard and soft matrix elements valid in the heavy-quark limit. However, a reliable evaluation
of the soft physics, namely hadronic wave functions and form factors, is notoriously difficult.
These difficulties must be overcome, as the precise knowledge of hadronic contributions to heavy
meson decay amplitudes is crucial to determine strong phases without which CP violation cannot
occur [3–5].
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Figure 1: A set of representative yet not exhaustive diagrams of DN scattering via the exchange of light
pseudoscalar and vector mesons. The πNN coupling can be be deduced from the experimental pion-nucleon
scattering lengths of pionic atoms [6] and the D∗Dπ coupling can be extracted from the physical decay width
of D∗+ → D0π+. It is, however, misguided to assume SU(4)F flavor symmetry expressed by relations of the
kind gD∗Dπ = gρDD = gρD∗D∗ in applications of effective Lagrangians to these scattering amplitudes. At
which light-meson virtuality q2 the couplings are evaluated should also be taken into consideration.

Flavor physics is not merely a fertile playground for indirect precision tests of the Standard
Model, as it also provides a powerful tool to study nonperturbative aspects of QCD in charm and
bottom mesons and in heavy quarkonia. Charm physics, on its own right, will be the object of much
experimental activity at the Facility for Antiproton and Ion Research (FAIR), at the Japan Proton
Accelerator Research Complex (J-PARC) and at the Beijing Spectrometer (BES III). Notably, in this
context, the masses and quantum numbers of recently discovered D mesons and their possible radial
excitations are not yet precisely determined (the preferred interpretations are scalar and vector D
and Ds mesons in some cases). The discovery of new types of charmonia, especially the plethora
of observed X,Y, Z states, is exciting as these objects challenge the commonplace view of hadrons
as either q̄q or qqq color-singlet states. Their composition remains controversial and numerous
theoretical descriptions have been proposed. In case of the X(3872) this ranges from mixtures of
pure charmonia with molecular states to purely molecular bound states and tetraquarks. Molecular
states, which are bound states of mesons, are plausible since the mass difference between the
X(3872) and the D̄0D∗0 threshold is tiny.

The effective Lagrangian approaches we discuss in Section 2 treat the observed decays, for
instance X(3872) → J/ψ π+π− [7–10], in terms of mesonic degrees of freedom, where a J/ψ ρ
state in X(3872) → J/ψ ρ → J/ψ π+π− is preceded by a D-meson loop that couples to the
J/ψ and ρ [11]. Similarly, the reaction D(∗)D(∗) → πX(3872) is effectively described by an
intermediate triangle diagram with pseudoscalar and vector mesons [12]. As we will see, the
effective Lagrangians are expressed in terms of effective flavored couplings between D- and light
mesons which are not known a priori.

Related considerations apply to the prospects of studying in-medium D mesons, which may
open the possibility of forming novel charmed nuclear bound states. Their existence is contentious,
yet the study of interactions between charmed mesons and nuclear matter represents an important
component of the proposed PANDA activities at FAIR, where low-momentum charmonia, such as
J/ψ and ψ, as well as D(∗) mesons, will be produced by antiproton annihilation on nuclei [13].
Effective Lagrangians have also been employed to calculate DN cross section with the diagrams
depicted in Figure 1. They are typically formulated with couplings between D(∗) mesons and
light pseudoscalar and vector mesons and are derived from an SU(4)F extension of light-flavor
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chirally-symmetric Lagrangians.
At a future Electron-Ion Collider (EIC), the electroproduction of these charmonia from nuclei

at threshold may be exploited to reveal the existence of hidden-charm pentaquarks [14] and offers
prospects for a quantitative estimate of the QCD trace anomaly [15–17]. Irrespective of the
experiment’s aim, the extraction of valuable information from cross sections implies the difficult
task of understanding charmonium production and its final-state wave function [18] whose light-
front projections were recently computed in Ref. [19] and are discussed in another contribution to
these proceedings [20].

Thus, while we just swept a wide range of physical motivations and experimental and the-
oretical challenges in heavy flavor physics, their strong appeal to a hadron physicist should be
evident. In the following, we will review various aspects of charm physics and the motivation for
heavy flavor symmetry in effective Lagrangians, while also pointing out a possible misguidance in
assuming universal couplings between heavy and light mesons. Flavor-symmetry breaking and a
nonperturbative description of mesons are indeed the common thread of this contribution.

2. Flavor and spin symmetries in effective theories

In an effective heavy-quark expansion of QCD it is common practice to take the limit mQ →∞

as a good approximation for quarks with masses mQ � ΛQCD. This leads to heavy-spin and -flavor
symmetries which are not manifest in the QCD Lagrangian but emerge in heavy quark effective
theory (HQET) [21–23]. In a nutshell, this effective theory consists in an expansion in powers of
m−1
Q and αs and to leading order the HQET Lagrangian reads,

LHQET = h̄v iv · D hv +
1

2mQ

[
h̄v

(
i ®D

)2
hv + c(µ)

g

2
h̄v σµν taGa

µν hv

]
+ O

(
m−2
Q , α

2
s

)
, (1)

where Dµ = ∂µ + gtaAa
µ is the usual covariant derivative, Aa

µ is the gluon field, Ga
µν is the gluon

field strength tensor and ta = λa/2 are the SU(3) color group generators. The Wilson coefficient
c(µ) represents higher-order operator corrections in αs(µ) = g2/4π with a matching condition at
tree level that implies c(mQ) = 1 + O[αs(m2

Q)] at the renormalization point µ = mQ. The heavy
quark interacts with the light quark by exchanging momenta k much smaller than its mass, i.e.
k ∼ ΛQCD � mQ. Hence, being almost on-shell, it moves with the hadron velocity1 vµ and to a
good approximation the heavy-quark momentum can be written as,

pµ = mQvµ + kµ , (2)

close to the momentum mQvµ of the hadron’s motion. In other words, in the limit mQ → ∞, the
heavy-quark velocity becomes a conserved quantity and the momentum exchange with surrounding
light constituents is predominantly soft. In the Lagrangian (1), hv denotes the large component of
the Dirac spinor field obtained from the positive-energy projection,

hv(x) = eimQv·x 1 + γ · v
2

Q(x) , (3)

1 The four-velocity satisfies v2 = 1 with vµ = (1, ®0) in the rest frame of the heavy quark.
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where Q(x) is the heavy-quark spinor in the QCD Lagrangian, LQ = Q̄(γ · D − mQ)Q. The
exponential phase factor serves to subtract mQvµ from the heavy quark momentum, so that in
momentum space a derivative acting on hv(x) produces the residual momentum k. The small
component of the quark spinors is suppressed in m−1

Q and integrated out in the effective theory.
In the infinite-heavy quark limit only the leading term survives in the Lagrangian (1), which

exhibits the full U(2Nh) spin-flavor symmetry (Nh: heavy flavor number): it is mass-independent
and invariant under rotations in flavor space, and in the absence of Dirac matrices heavy-quark
interactions with gluons leave its spin unchanged while hv(x) is invariant under spin rotation. When
applying Feynman rules it gives rise to the well known quark propagator in the heavy-quark limit,
which can also be derived using Eq. (2):

S(p) = i
γ · p + mQ

p2 − m2
Q

mQ→∞

−−−−−−→ i
1 + γ · v
2 v · k

+ O

(
k

mQ

)
. (4)

Since the heavy-quark spin decouples in this limit, the light quarks do not experience any
different interactions with a heavy constituent quark in a pseudoscalar or in vector meson. This
implies symmetry relations between the decay constants of heavy mesons: fD = fD∗ and fB = fB∗ .
Of course, in full QCD this is not even the case for the B-mesons. The second term in Eq. (1) is the
kinetic energy, ®p 2

/2mQ, of a heavy non-relativistic constituent quark and breaks the heavy quark
flavor symmetry. Both, heavy quark spin and flavor symmetries are broken by O(ΛQCD/mQ) and αs
corrections due the chromomagnetic term in Eq. (1), and so do higher terms in the expansion as well
as nonperturbative contributions. More precisely, gluon exchanges renormalize coefficients that
multiply effective operators. For example, the renormalization scale dependence of c(µ) must be
cancelled by that of the chromomagnetic moment operator. However, in evaluating matrix elements
with initial and final hadron states, the operators give rise to form factors which break flavor
symmetry and whose scale dependence is often unknown due to the model approach employed. To
summarize, HQET can schematically be expressed as the expansion,

LHQET = L0 +
1

mQ
L1 +

1
m2
Q

L2 + . . . , (5)

in which L0 is manifestly spin and flavor independent, whereas the 1/mQ terms are symmetry
breaking corrections.

Spin and flavor symmetries have also guided the construction of an effective Lagrangian that
describes the interactions of the pseudoscalar and vector D(∗) and B(∗)mesonswith light pseudoscalar
mesons [24–26]. This Lagrangian satisfies C, P, T and Lorentz invariance and at leading order in
the 1/MH expansion, where MH is the heavy-meson mass, it imposes flavor and spin symmetry in
the heavy meson sector and chiral SU(3)L ⊗ SU(3)R invariance in the light sector:

LHMChPT = −Tr
[
H̄a iv · DabHb

]
+ iĝ Tr

[
H̄aγµγ5Aab

µ Hb

]
+

f 2
π

8
∂µξ

2
ab∂µξ

2†
ba
, (6)

where the trace is over Dirac and flavor indices, the latter represented by a subscript that denotes
the light antiquark in the heavy meson: Ha = Qq̄a, a = u, d, s. Here, v are the heavy-meson
velocities and a sum over them is implicit. The covariant derivative is defined as the sum of the
partial derivative and the vector current of the light-meson octet,

Dab
µ Hb = ∂µHa −

1
2
[
ξ†∂µξ + ξ∂µξ

†
]
ab

Hb , (7)
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and has the right transformation properties under chiral transformations with the negative parity
spin doublets, D,D∗ and B, B∗, represented by Dirac tensor structures as,

Ha(v) =
1 + γ · v

2
[
P∗aµ (v)γµ − Pa(v)γ5

]
, H̄a = γ0H†aγ0 . (8)

The heavy vector and pseudoscalar fields are described by annihilation operators, Pa and P∗aµ ,
which are normalized as:

〈0|Pa |Ha(0−)〉 =
√

MH , (9)

〈0
��P∗aµ �� H∗a(1−)〉 =

√
MH ελµ . (10)

One has by definition v · P∗a = 0, ελ is the polarization of the vector meson and MP = MP∗ = MH

at this leading order. The light-meson octet also enters the Lagrangian via the axial current Aab
µ ,

Aba
µ =

i
2

[
ξ†∂µξ − ξ∂µξ

†
]
ba

, (11)

which transforms as the adjoint representation of SU(3)V and makes use of the exponential repre-
sentation ξ = exp (iM/ fπ), where fπ is the weak decay constant of the pion in the chiral limit and
M is the 3 × 3 hermitian, traceless matrix of the pseudo-Goldstone boson octet:

M =

©­­­­«
√

1
2 π

0 +
√

1
6 η π+ K+

π− −

√
1
2 π

0 +
√

1
6 η K0

K− K̄0 −

√
2
3 η

ª®®®®¬
. (12)

Their coupling to the heavy mesons is determined by a putative universal coupling constant ĝ. The
last term in Eq. (6) is the non-linear Lagrangian that describes the light meson self-interactions.
The interactions between heavy and light mesons are obtained by expanding the field ξ and taking
traces. Corrections to the Lagrangian stem from higher terms in the 1/MH expansion and from
chiral symmetry breaking; for details we refer to Ref. [26].

While SU(3)F is a sensible approximation in hadron physics, though broken at the≈ 20% level,
it is questionable whether this is still reasonable for SU(4)F . At the quark level, we saw that at next-
to-leading order in the effective Lagrangian (1) flavor and spin symmetries are violated and similarly
so for charmed mesons in the Lagrangian of Heavy Meson Chiral Perturbation Theory (HMChPT)
of Eq. (6). However, the charm and D masses, unlike those of the b-quark and B-mesons, sit in an
uncomfortable energy region. They are not light, nor are they heavy enough to neglect higher-order
1/MH corrections. Moreover, it is assumed that the coupling ĝ between the light and heavy meson
fields is universal at leading order in the Lagrangian (6), i.e. it can be obtained from the strong
B∗Bπ coupling with renormalization of ĝ by O(1/MH ) corrections [26]. However, as we will see
in Section 3, it makes a material difference whether ĝ is extracted from a hadronic gD∗Dπ or gB∗Bπ
coupling. The former coupling can be related to the physical decay D∗ → Dπ [27, 28], though the
latter is unphysical considering the mass difference mB∗ −mB < mπ . Still, one can calculate gB∗Bπ
in the chiral limit, mπ → 0.

Besides HMChPT, other like-minded approaches to interactions between heavy and light
mesons are based on a phenomenological “bottom-up” SU(4)F Lagrangian, not derived from a

6



P
o
S
(
C
H
A
R
M
2
0
2
0
)
0
2
5

Heavy meson chiral Lagrangians, effective couplings and SU(4) flavor breaking Bruno El-Bennich

1/mQ expansion of the heavy-quark spinor and tantamount to a meson-exchange model. In the limit
of SU(4)F invariance, the free Lagrangian for pseudoscalar and vector mesons is given by [29–32],

L0 = Tr
(
∂µP†∂µP

)
−

1
2

Tr
(
F†µνFµν

)
, (13)

where Fµν = ∂µVν − ∂νVµ, and P and V denote the 4 × 4 pseudoscalar and vector meson matrices
in SU(4)F with proper normalization:

P =
1
√

2

©­­­­­­­«

π0
√

2
+

η
√

6
+

ηc√
12

π+ K+ D̄0

π− − π
0
√

2
+

η
√

6
+

ηc√
12

K0 D−

K− K̄0 −

√
2
3η +

ηc√
12

D−s

D0 D+ D+s −
3ηc√

12

ª®®®®®®®¬
, (14)

V =
1
√

2

©­­­­­­­«

ρ0
√

2
+ ω′√

6
+

J/ψ
√

12
ρ+ K∗+ D̄∗0

ρ− −
ρ0
√

2
+ ω′√

6
+

J/ψ
√

12
K∗0 D∗−

K∗− K̄∗0 −

√
2
3ω
′ +

J/ψ
√

12
D∗−s

D∗0 D∗+ D∗+s −
3J/ψ
√

12

ª®®®®®®®¬
. (15)

Next, to introduce interactions between pseudoscalar and vector mesons one applies the following
minimal prescription:

∂µP → ∂µP −
iĝ
2

[
Vµ, P

]
, (16)

Fµν → ∂µVν − ∂νVµ −
iĝ
2

[
Vµ,Vν

]
. (17)

Applying these substitutions in the Lagrangian (13) and taking into account the hermiticity of the
matrices, namely P = P† and V = V†, one arrives at the Lagrangian:

L = L0 + iĝ Tr
(
∂µP

[
P,Vµ

] )
−
ĝ2

4
Tr

( [
P,Vµ

]2
)

+ iĝ Tr
(
∂µVν

[
Vµ,Vν

] )
+
ĝ2

8
Tr

( [
Vµ,Vν

]2
)
. (18)

In this approach, SU(4)F flavor symmetry is explicitly broken by hadron-mass terms we here
omitted, as they are irrelevant to the discussion, and for which experimental values are used.
However, due to the flavor symmetry imposed, some exact relations between the couplings exist as
a consequence of group properties, as will be seen shortly. The Lagrangian in Eq. (18) accounts for
the three-point functions PPV and VVV . Yet, to include anomalous parity terms that give rise to
PVV vertices, it is customary to resort to the gauged Wess-Zumino action and derive an anomalous
three-meson Lagrangian [31, 33]:

Lan. = −
ĝ2
aNc

16π2 fπ
εµναβ Tr

(
∂µVν∂αVβP

)
. (19)

For practical applications to specific mesons, the Lagrangians (18) and (19) are expanded in
terms of the pseudoscalar- and vector-meson matrices in Eqs. (14) and (15), where only the entries

7
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for the mesons of interest are kept and all other matrix elements are set to zero; see Ref. [32]
for further details. Specifying to the case of the π, ρ, D and J/ψ mesons, which is relevant to a
phenomenological description of J/ψ suppression in final-state interactions of heavy-ion collisions,
the relevant interaction Lagrangians derived from Eq. (18) and (19) are:

LD∗Dπ = igD∗Dpi D∗µ ®τ ·
(
D̄∂µ ®π − ∂µD̄ ®π

)
, (20)

LD∗D∗π = −gD∗D∗π εµναβ ∂µD∗ν ®τ · ®π ∂αD̄∗β , (21)

LψDD = igψDD ψµ
(
∂µDD̄ − D∂µD̄

)
, (22)

LψD∗D = gψD∗D εµναβ ∂µψν

(
∂αD∗β D̄ + D∂αD̄∗β

)
, (23)

LψD∗D∗ = igψD∗D∗
[
ψµ

(
∂µD∗ν D̄∗ν − D∗ν∂µD̄∗ν

)
+

(
∂µψνD∗ν − ψν∂µD∗ν

)
D̄∗µ

+ D∗µ
(
ψν∂µD̄∗ν − ∂µψν D̄∗ν

) ]
, (24)

LρDD = igρDD

(
D®τ ∂µD̄ − ∂µD®τ D̄

)
· ®ρµ , (25)

LρD∗D = gρD∗D εµναβ ∂µρν

(
∂αD∗β ®τD̄ + D®τ∂αD̄∗β

)
, (26)

LρD∗D∗ = igρD∗D∗
[ (
∂µD∗ν ®τ D̄∗ν − D∗ν ®τ ∂µD̄∗ν

)
· ®ρµ +

(
D∗ν ®τ · ∂µ ®ρν − ∂µD∗ν ®τ · ®ρν

)
D̄∗µ

+ D∗µ
(
®τ · ®ρν ∂µD̄∗ν − ®τ · ∂µ ®ρν D̄∗ν

) ]
, (27)

In the above expressions, ®π and ®ρ denote the pion and rho meson isospin triplets, respectively, and ®τ
are Pauli matrices, while D ≡ (D0,D+) and D∗ ≡ (D∗0,D∗+) describe the pseudoscalar and vector
D-meson doublets.

The charge-specific coupling constants, gPPV , gPVV and gVVV , are functions of the universal
SU(4)F couplings g and ga defined with the Lagrangians in Eqs (18) and (19) and their explicit
relations are given in Table 1 of Ref. [32]. We merely remind that exact SU(4)F symmetry implies
certain relationships between the couplings, amongst which we highlight:

gD∗Dπ = gD∗−D0π+ = gD∗+D0π− =
√

2 gD∗±D∓π0 =
√

2 gD∗0D0π0 =
ĝ

2
√

2
, (28)

gψDD = gψD0D0 = gψD+D− , gψDD = gψD∗D∗ =
ĝ
√

6
, (29)

gρD∗D = gρ+D0D∗− = gρ−D̄0D∗+ = gρ+D−D∗0 = gρ−D+D̄∗0 =
1

2
√

2
ĝ2
aNc

16π2 fπ
, (30)

gD∗Dπ = gρDD = gρD∗D = gρD∗D∗ . (31)

The SU(3)F relation gρKK = gρππ/2 is preserved and generalized to:

gρDD = gρKK =
gρππ

2
. (32)

If one takes SU(4)F at face value, a single known coupling constant, for example gD∗+D0π+ which
has been measured experimentally [27], suffices to infer all other couplings. However, as we will
see, in particular the last algebraic relation (32) strongly indicates that the SU(4)F breaking between
couplings appears to be incompatible with the idea of a universal coupling. We may thus ask: can
ĝ be unambiguously related to all the strong-interaction matrix elements mentioned above, gD∗Dπ ,

8
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Figure 2: Diagrammatic representation of the impulse approximation to the D∗+ → D0π+ decay in Eq. (34).
The internal lines represent dressed quark propagators and the filled ellipses are the meson’s BSAs. In case
of the soft-pion B∗+ → B0π+ amplitude the following substitutions are in order: c→ b̄, d̄ → u and u→ d̄.

gDρD , etc.? Given that the rationale of building Lagrangians for heavy mesons interactions with
light mesons is nowadays extended to the SU(5)F flavor group [34], our aim is to emphasize this
shortcoming and to propose effective couplings from quark-degrees of freedom that will account for
the flavor symmetry breaking effects without resorting to additional terms in the 1/MH expansion.

3. Effective couplings and flavor SU(4)F breaking

Soon after the introduction of effective SU(4)F Lagrangians, such as the ones discussed in
Section 2, the study of interactions between open-charmmesons and nuclei to explore the possibility
of charmed nuclear bound states became the object of intense activity [35–40]. Their application
has gone beyond that field and include the reaction D(∗)D(∗) → πX(3872) which involves an
intermediate triangle diagram with pseudoscalar and vector mesons [12], the decay of a highly
excited D meson [41], the J/ψ regeneration in the hadronic gas phase following the cooling of a
quark-gluon plasma [42], the production of the ψ(3770) resonance in p̄p→ D̄D [43] or the thermal
properties of pseudoscalar and vector charm mesons [44], amongst others. At the same time, the
effective couplings, quite naturally, have also been the object of interest [23, 45–75].

We here summarize earlier results for the D∗Dπ, D∗sDK , B∗Bπ, B∗sBK , ρππ, ρKK , ρDD,
ρD∗D and ρD∗D∗ couplings calculated in impulse approximation, where the dressed heavy- and
light- quark propagators were algebraic approximations to numerical solutions of the quark’s Dyson-
Schwinger equation (DSE) [76], and the Bethe-Salpeter amplitude (BSA) for the D and B were
modeled in absence of available solutions for asymmetric heavy-light bound states at that time [23,
46–48]. As already mentioned in Section 2, the simplest coupling that gives access to ĝ is found in
the definition of the D∗+ → D0π+ decay amplitude:

〈D(p2)π(q)|D∗(p1, λ)〉 := gD∗Dπ ε
λD∗ (p1) · q . (33)

While here illustrated for a strong D∗ decay, this matrix element generally defines the dimensionless
coupling of a heavy-light vector meson H∗, characterized by a polarization state λ, and a heavy-
light pseudoscalar meson, H, to a pion with momentum q = p1 − p2. Hence, one may also use
this amplitude for the unphysical process B∗ → Bπ in the chiral mπ → 0 limit which defines
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gB∗Bπ . A consistent calculation within the same framework allows therefore for a quantitative
estimate of the degree to which notions of heavy-quark symmetry are sensible in the charm sector.
The diagrammatic representation of such a decay is depicted in Figure 2. The decay H∗ → Hπ
amplitude in impulse approximation is given by,

gH∗Hπ ελH∗· q = tr
∫

d4k
(2π)4

ελH∗ · ΓH∗(k; p1) SQ(kQ) Γ̄H (k;−p2) Su(ku) Γ̄π(k;−q) Sd(kd) , (34)

where the trace is over Dirac spinor and color indices, ελH∗ is the vector-meson polarization and
the momenta are kQ = k + ηp1, kd = k − η̄p1 and ku = k + ηp1 − p2 with the momentum partition
parameters η + η̄ = 1. Moreover, S(k) and Γ(k, p) are dressed quark propagators [77] and BSAs,
respectively, discussed in Section 4.

The dimensionless coupling gH∗Hπ is related at leading order in the 1/MH expansion to the
strong meson coupling ĝ [26]:

gH∗Hπ = 2
√

MH MH∗

fπ
ĝ . (35)

Using a constituent charm quark propagator and Eqs. (34) and (35) the difference in extracting ĝ

from either gD∗Dπ or gB∗Bπ is material [46],

gD∗Dπ = 15.8+2.1
−1.0 =⇒ ĝc = 0.53+0.07

−0.03 , gB∗Bπ = 30.0+3.2
−1.4 =⇒ ĝb = 0.37+0.04

−0.02 , (36)

where in order to distinguish between the extraction of the universal coupling from either H∗Hπ
vertexwe label the quark flavor: ĝc and ĝb. One can also employ a confining heavy-quark propagator
of the algebraic form,

SQ(k) =
−iγ · k + mQ

m2
Q

F (k2/m2
Q) , (37)

with the entire function F (x) = [1− exp(−x)]/x. Unlike the constituent-quark propagator SQ(k) =
[iγ ·k+mQ]

−1, Eq. (37) implements confinement yet still produces amomentum independent heavy-
quarkmass-function. With this substitution for the heavy-quark propagator andwithmc = 1.32GeV
and mb = 4.65 GeV one obtains [23]:

gD∗Dπ = 18.7+2.5
−1.4 =⇒ ĝc = 0.63+0.08

−0.05 , gB∗Bπ = 31.8+4.1
−2.8 =⇒ ĝb = 0.39+0.05

−0.03 . (38)

Our value for gD∗Dπ is in good agreement with the coupling extracted by CLEO from the D∗ → Dπ
decay width: gexp.

D∗Dπ = 17.9 ± 1.9 [27]. A more recent analysis of the D∗(2010)+ decay width by
the BABAR collaboration [28] yields a somewhat smaller coupling, gexp.

D∗Dπ = 16.9 ± 0.14, which
still agrees with most theoretical calculations. In Table 1 and 2 we collect a set of representative
values for the couplings obtained with our approach, QCD sum rules (QCDSR) and Lattice QCD.

Turning our attention now to the B∗Bπ coupling, we observe that ĝb obtained with lattice
QCD is uniformly above 0.4, yet the result of Ref. [70] stands out by providing the sole value in
agreement with the D∗Dπ coupling. This is not generally the case and whether ĝ is extracted from
the D∗Dπ or B∗Bπ vertex in the DSE-BSE approach has significant consequences. Indeed, it is
often interpreted as a sign that the leading term of a ΛQCD/mc expansion may not be reliable. On
the other hand, the numerical values obtained for either couplings in lattice QCD do not allow for
a clear picture, i.e. whether ĝc > ĝb.
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CLEO [27] BABAR [28] DSE [23] QCDSR [32] Lattice [68] Lattice [69]

gD∗Dπ 17.9 ± 1.92 16.9 ± 0.14 18.7+2.5
−1.4 17.5 ± 1.5 20.0 ± 2.0 15.8 ± 0.8

ĝc 0.60 ± 0.06 0.57 ± 0.006 0.63+0.08
−0.05 0.59 ± 0.05 0.67 ± 0.07 0.53 ± 0.03

Table 1: Comparison of theoretical values for gD∗Dπ and ĝc with those extracted from the experimental
D∗ → Dπ decay widths. Note that ĝc is extracted at leading order via Eq. (35).

DSE [23] QCDSR [45] Lattice [67] Lattice [70] Lattice [71] Lattice [72]

gB∗Bπ 31.8+4.1
−2.8 29.0 ± 3.0 — — — —

ĝb 0.39+0.05
−0.03 0.36 ± 0.04 0.44±0.03+0.07

−0.0 0.56 ± 0.08 0.49 ± 0.03 0.45 ± 0.05

Table 2: Comparison of theoretical values for gB∗Bπ and ĝb in the soft-pion limit.

We take advantage of this discussion to remind that the DSE-BSE calculations in Refs. [23, 46–
48] employ algebraic expressions for the quark propagators of the light quarks based on DSE
solutions and a simple leading covariant BSA model for the D, D∗ B and B∗ mesons. These
simplifications were mainly imposed by the lack of proper BSAs for heavy-light mesons at that
time [78]. The shortcomings of a too simplistic ladder-truncation of the BSE kernel [79–82] have
meanwhile been overcome with distinct ansätze for the quark-gluon vertex in the heavy and light
sector [19, 83–86], and a much improved, fully Poincaré-covariant calculation of gD∗Dπ and gB∗Bπ

is underway [87].
Of course, as in the case of the soft-pion B∗B→ π decay, one may calculate other unphysical

strong decay amplitudes, for instance B∗s → BK and D∗s → DK from which the effective couplings
gD∗sDK and gB∗sBK can be extracted. This is because we can use Eq. (34) irrespective of the q2-value
and without resorting to extrapolations from spacelike to timelike momenta or of the current-quark
mass. The couplings obtained in Ref. [23] are:

gD∗sDK = 24.1+2.5
−1.6 , gB∗sBK = 33.3+4.0

−3.7 . (39)

It is notable that the ratios, gD∗sDK/gD∗Dπ and gB∗sBK/gB∗Bπ are of comparable magnitude as the
decay-constant ratios fDs/ fD and fBs/ fB, respectively, indicating a typical SU(3)F flavor breaking
pattern of the order of 20%.

Further ratios that provide a measure for SU(3)F and SU(4)F breaking are based on the ρππ,
ρKK , ρDD, ρD∗D and ρD∗D∗ couplings. The latter three couplings are those we came across in
the effective Lagrangians (25)–(27), whereas the first coupling relates directly to the strong decay
ρ → ππ. While no physical processes are associated with the ρKK , ρDD, ρD∗D and ρD∗D∗

couplings, they are commonly employed in defining ρ-mediated exchange interactions between
a nucleon and kaons or D-mesons [37, 39]. In these applications, the ρ-meson momentum is
necessarily off-shell and spacelike, and couplings and form factors may be defined once one settles
on a definition of the off-shell ρ-meson. At leading-order in a systematic, symmetry-preserving
truncation scheme, in analogy with the physical decay amplitude in Eq. (34), we can express the

11
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Figure 3: Ratios of the couplings gρKK/gρDD (solid curve) and gρKK/gρππ (dashed curve). In case of exact
flavor SU(4)F symmetry, these ratios take the values 1 (dot-dashed line) and 1/2 (dotted line), respectively.
The vertical dotted line marks the on-shell point of the ρ-meson and in Euclidean metric q2 > 0 is spacelike.
Figure taken from Ref. [47].

ρDD matrix element as:

gρDD ελρ · p1 = tr
∫

d4k
(2π)4

Γ̄D(k,−p1) Sc(kc) Γ̄D(k,−p2) Sf (k ′f ) ε
λρ · Γρ(k, q) Sf (k f ) , (40)

where we work in the isospin symmetric limit, so f = u = d. Momentum conservation requires
q = p1+p2, k f = k+ηq, k ′f = k−η̄q and kc = k+ηq−p1, where the relative-momentumpartitioning
parameters satisfy η + η̄ = 1 and p2

1 = p2
2 = −M2

D . The integral expressions for gρD∗D and gρD∗D∗ ,
respectively Eqs. (41) and (42), are obtained with the substitutions ΓD(k; p) → ελD∗ · ΓD∗(k; p).

As we highlighted in Eq. (32), SU(4)F symmetry implies some stringent relations between the
couplings. As can be read from Figure 3, the equality gρKK = gρππ/2 provides a fair approximation
on the domain P2 ∈ [−m2

ρ,m
2
ρ] where the deviation ranges from −10% to 40% and describes again

the typical SU(3)F breaking pattern. When it comes to the relation gρDD = gρKK , the striking
discrepancy between what flavor symmetry dictates and what is found in a covariant calculation
based on quark degrees of freedom is of the order of 360% to 440%. We note that a lattice QCD
calculation [57] finds gρDD(0) = 4.84(34) and gρD∗D∗(0) = 5.94(56), values that compare well
with our coupling in Figure 4 at zero-recoil momentum: gρDD(0) ' 6.3.

As we continue with the couplings that involve a more complicated spin structure, we start
with the amplitude that describes the transition of on-shell D∗ to D mesons emitting an off-shell
ρ-meson or equivalently, the unphysical process of an off-shell ρ-meson decaying into a D∗D pair.
This defines the gρD∗D couplings as follows:

gρD∗D
1

MD∗
εαβµν ε

λD∗
α ε

λρ
β p1µ p2ν := 〈D∗(p2, λD∗)| ρ(q, λρ) |D(p1)〉 . (41)

The three vector-meson vertex ρD∗D∗, with two mesons on-shell, introduces additional complexity
and requires a minimal set of three independent couplings analogous to the electromagnetic form

12
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Figure 4: Left panel: The dimensionless couplings gDρD and gD∗ρD as a function of the ρ-meson’s four-
momentum squared, with the D and D∗ mesons on-shell. Note that gD∗ρD rather than gD∗ρD/mD∗ is plotted
and q2 > 0 is spacelike in Euclidean metric. Right panel: The three-vector couplings defined in Eq. (42)
with the abbreviation giD∗ρD∗ ≡ gi, i = 1, 2, 3, where the D∗-mesons are on-shell. In both panels the dashed
vertical line denotes the ρ-meson on-shell point. Figures taken from Ref. [48].

factors of vector mesons [88, 89]:

〈D∗(p2 , λD∗)| ρ(q, λρ) |D∗(p1 , λD∗)〉 = −

3∑
i=1

T i
µρσ(p, q) g

i
D∗ρD∗(q

2) ε
λρ
µ ε

λD∗
ρ ε

λD∗
σ

= Λµρσ(p, q) ε
λρ
µ ελD

∗

ρ ελD
∗

σ , (42)

with the tensor structures:

T 1
µρσ(p, q) = 2 pµ PT

ργ(p1)Tγσ(p2) , (43)

T 2
µρσ(p, q) = −

[
qρ − p1ρ

q2

2 m2
D∗

]
Tµσ(p2) +

[
qσ + p2σ

q2

2 M2
D∗

]
Tµρ(p1) , (44)

T 3
µρσ(p, q) =

pµ
M2

D∗

[
qρ − p1ρ

q2

2 M2
D∗

] [
qσ + p2σ

q2

2 M2
D∗

]
. (45)

In Eqs. (43) to (45) we introduce the four-momentum p via p1 = p − 1
2 q and p2 = p + 1

2 q,
p2

1 = p2
2 = −M2

D(∗)
and Tαβ(p) = δαβ − pαpβ/p2 is the transverse projection operator. With this

decomposition of the tensor structures all couplings are positive, giD∗ρD∗(q
2) ≥ 0, i = 1, 2, 3, and

the matrix element 〈D∗(p2 , λD∗)| ρ(q, λρ) |D∗(p1 , λD∗)〉 satisfies transversality:

p2ρ Λµρσ(p, q) = 0 , (46)
p1σ Λµρσ(p, q) = 0 , (47)

qµ Λµρσ(p, q) = 0 . (48)

The corresponding couplings were obtained in Ref. [48] and are plotted as functions of the off-
shell ρ-momentum in Figure 4. The dimensionless couplings gρDD and gρD∗D are smooth and
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Figure 5: The couplings gJ/ψDD and gJ/ψD∗D as functions of the off-shell momenta square, p2
D = p2

D∗ = q2,
and with the J/ψ meson on-shell.

monotonically decreasing as q2 increases away from the on-shell point q2 = −m2
ρ. On the average,

in the domain q2 ∈ [−m2
ρ,m

2
ρ], one observes gρD∗D & 3 gρDD , which can be attributed to differences

in the BSA normalizations of the D and D∗ and therefore indirectly to fD∗ > fD . This yields the
hierarchy relation:

gρDD(0) ≈ 6.4 < gD∗Dπ ≈ 17 < gρD∗D(0) ≈ 23 . (49)

The ρD∗D∗ couplings are also smooth and monotonically decreasing functions of the ρ-
momentum. However, there are remarkable quantitative differences between their magnitudes and
damping rates. Averaging over the interval q2 ∈ [−m2

ρ,m
2
ρ], one finds:

ḡ2
(
q2) ≈ 3ḡ3

(
q2) ≈ 5ḡ1

(
q2) . (50)

Such relative strengths are of the same magnitude as those found in the ρ-meson elastic form factor.
We also note that ḡ3(s) ≈ 0.7 ḡρD∗D(s), in other words one of the ρD∗D∗ couplings is of similar
strength than the ρD∗D coupling.

In concluding this section, we extend the calculations of charmed couplings to the J/ψ char-
monium and present novel results within the same framework. In Figure 5, the J/ψDD̄ and
J/ψD∗D̄ couplings, defined by 〈D(p1)D(p2)|J/ψ(p, λJ/ψ)〉 and 〈D∗(p1, λD∗)D(p2)|J/ψ(p, λJ/ψ)〉,
are plotted, where the J/ψ is on-shell whereas the D mesons are both symmetrically off-shell:
p2

1 = p2
2 = q2. Note that this differs from the convention in Ref. [32] where either the J/ψ or one

of the D mesons are off-shell. This choice is motivated by the observation that the couplings are
commonly required for space-like momenta of the D and D∗ mesons in loop diagrams that describe
J/ψ → D(∗)D̄→ J/ψ. Due to the simplified ansatz for the mesons’s BSA based on Gaussian-type
functions [48] and the use of two charm propagators defined in Eq. (37), these form factors grow
rapidly for larger time-like momenta and we only plot them up to q2 = −2 GeV2, which is below the
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on-shell point of the D meson. These couplings are often quoted at q2 = 0 GeV2, where we find,

gJ/ψDD(0) ' 2.2 , gJ/ψD∗D(0) ' 0.7 GeV−1 , (51)

remembering that both D-mesons are evaluated off-shell at zero-momentum. As for the ρDD
couplings, we expect a more realistic behavior as a function of q2 employing the full Poincaré
covariant computation of the BSA for the D, D∗ and J/ψ mesons [87] rather than model wave
functions.

4. Poincaré covariance in bound-state description of heavy mesons

In the light-meson sector it is crucial to satisfy chiral symmetry and its breaking pattern to
ensures the pion is massless in the chiral limit. The axialvector Ward-Green-Takahashi identity
(axWTI) describes the properties of the divergence of the vertex and expresses chiral symmetry and
its breaking pattern:

PµΓ
f g
5µ (k; P) = S−1

f

(
kη

)
iγ5 + iγ5S−1

g

(
kη̄

)
− i

[
m f + mg

]
Γ
f g
5 (k; P) . (52)

In this axWTI, Γ f g5µ (k; P) and Γ f g5 (k; P) are the color-singlet axialvector and pseudoscalar vertices
for two quark flavors, f and g, in Eqs. (58) and (59). They are solutions of a BSE with γ5γµ or γ5

inhomogeneity, respectively. The total four-momentum of the meson satisfies P2 = −M2
P and the

quark momenta are defined as, kη = k + ηP and kη̄ = k − η̄P. The inverse of the dressed quark
propagator, S−1

f =
[
iγ · p Af (p2) + Bf (p2)

]−1, is fully described by vector and scalar pieces whose
respective dressing functions, Af (p2) and Bf (p2), are solutions of a DSE for a given flavor f whose
derivation is discussed in detail in Ref. [90], for example. We remind that the DSE is nothing else
but the nonperturbative equation of motion of a particle in a relativistic quantum field theory. In
QCD, this DSE is given by the integral equation,

S−1
f (p) = Z f

2 i γ · p + Z f
4 m f (µ) + Z f

1 g
2
∫ Λ d4k
(2π)4

Dab
µν (q)

λa

2
γµSf (k) Γbν, f (k, p) , (53)

where the integral describes the infinite tower of the quark’s gluon dressing and Λ � µ is a
Poincaré-invariant regularization scale that can be taken to infinity. In Eq. (53), m f (µ) is the
renormalized current-quark mass which is related to the bare mass in the QCD Lagrangian via
Z f

4 (µ,Λ)m f (µ) = Z f
2 (µ,Λ)m

bm
f
(Λ), while Z f

1 (µ,Λ), Z f
2 (µ,Λ) and Z f

4 (µ,Λ) are respectively flavor-
dependent vertex, wave function and mass renormalization constants. Moreover, Dµν(q) is the
dressed-gluon propagator and Γa

µ, f
(k, p) = 1

2 λ
aΓµ, f (k, p) is the quark-gluon vertex, where λa

are the SU(3) color matrices and q = k − p. The most general covariant form of the quark
propagator is written in terms of scalar and vector contributions with Z f (p2) = 1/Af (p2) and
Mf (p2) = Bf (p2)/Af (p2):

Sf (p) =
1

iγ · p Af (p2) + Bf (p2)
=

Z f (p2)

iγ · p + Mf (p2)
. (54)

Suppose we take a timid step beyond the abundantly employed rainbow-ladder (RL) truncation
of the DSE and BSE, namely Γµ, f (k, p) ≡ γµ, motivated by the observation that the Abelian WTI
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it implies for the quark-gluon vertex2,

iq · γ = ik · γ Af (k2) − ip · γ Af (p2) + Bf (k2) − Bf (p2) , (55)

is only valid when Bf (k2) ' Bf (p2) and Af (k2) ' Af (p2) ' 1 over a large domain, k2, p2 > 0, of
momentum squared. This is only true in the infinitely-heavy quark limit, but does not apply to the
charm quark for which dressing effects are important [23]. Clearly, the vertex must exhibit some
sort of flavor dependence. Let us therefore slightly modify the RL kernel of the DSE:

Z f
1 g

2Dµν(q) Γν, f (k, p) =
(
Z f

2

)2
Gf (q2)Dfree

µν (q)
λa

2
γν . (56)

In here, the free gluon propagator in Landau gauge,

Dfree
µν (q) = δab

(
δµν −

qµqν
q2

)
1
q2 , (57)

and bare vertex γν are multiplied by an effective interaction model Gf (q2) for the product of the
gluon and vertex dressing which is now flavor dependent, unlike in common RL models [79, 82].

Whatever modifications we apply to the DSE kernel must have repercussions in the BSE. To
this end, the effect of the ansatz (56) that preserves the axWTI (52) can be studied by inserting the
DSE (53) as well as the axialvector and pseudoscalar vertices given by,

Γ
f g
5µ (k; P) = Z f

2 γ5γµ +

∫ Λ d4q
(2π)4

K f g(q, k; P) Sf (qη)Γ
f g
5µ (q; P)Sg(qη̄) , (58)

Γ
f g
5 (k; P) = Z f

4 γ5 +

∫ Λ d4q
(2π)4

K f g(q, k; P) Sf (qη)Γ
f g
5 (q; P)Sg(qη̄) , (59)

into the axWTI. (52) which leads to the relation (l = k − q),∫ Λ d4q
(2π)4

K f g(q, k; P)
[
Sf (qη)γ5 + γ5Sg(qη̄)

]
=

−

∫ Λ d4q
(2π)4

γµ
[
∆
f
µν(l)Sf (qη)γ5 + γ5∆

g
µν(l)Sg(qη̄)

]
γν , (60)

In Eqs. (58) and (59), K f g(q, k; P) is the fully-amputated quark-anti-quark scattering kernel sup-
pressing Dirac and color indices, qη = q+ηP and qη̄ = q− η̄P are the quark and antiquark momenta
and we have defined:

∆
f
µν(l) =

4
3

(
Z f

2
)2
Gf (l2)

(
δµν −

lµlν
l2

)
1
l2 . (61)

Comparing both sides of Eq. (60) one readily acknowledges that for ∆ f
µν(l) = ∆

g
µν(l) the identity

Eq. (60) is satisfied by the usual RL kernel,

K(q, k; P) = −Z2
2 G

(
l2

)
Dfree
µν (l) γµ

λa

2
γν
λa

2
. (62)

On the other hand, with a flavor-dependent interactionGf (l2) the kernel K f g(q, k; P) on the left-hand
side of Eq. (60) must somehow produce a flavored average of interactions.

2 Instead of the correct Slavnov-Taylor identity.
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Indeed, a consistent ansatz [91] forK f g(q, k; P) that satisfies Eq. (60) behaves for largemomenta
q2 as,

K f g ∼ − γµ

(
∆
f
µν + ∆

g
µν

2

)
γν , (63)

whereas in the infrared limit this becomes,

K f g ∼ − γµ

(
∆
f
µνσ

f
s (0) + ∆

g
µνσ

g
s (0)

σ
f
s (0) + σ

g
s (0)

)
γν . (64)

Both limits describe and average of interaction functions, in the latter case weighted with flavored
quark-dressing functions.

Given these considerations, we modified the RL truncation by introducing a flavor dependence
in the effective DSE and BSE vertices [19] which leads to a different treatment of the light and
heavy quarks. For the former, the vertex dressing is of significant magnitude, while for the latter it
amounts to describing the quark-gluon interaction with all but a bare vertex; see Fig. 1 in Ref. [19]
for a comparison of the interaction strength of light (u, d, s) and heavy (c, b) quarks. The BSE kernel
is thus written as,

K f g(k, q; P) = −Z2
2
Gf g(l2)

l2
λa

2
γν
λa

2
γν , (65)

where the wave-function renormalization constants obtained for both quarks with the DSE (53)
is combined into a single one: Z2(µ,Λ) =

√
Z f

2 Zg
2 . For the averaged interaction we employ the

ansatz,
Gf g(l2)

l2 = GIR
f g(l

2) + 4πα̃PT(l2) , (66)

in which the low-momentum domain is described by the Gaussian, infrared-finite support,

GIR
f g(l

2) =
8π2

(ω fωg)
2

√
D f Dg e−l

2/(ω fωg ) , (67)

and the perturbative tail is given by the usual expression [76],

4πα̃PT(q2) =
8π2γmF (q2)

ln
[
τ +

(
1 + q2/Λ2

QCD

)2] , (68)

with γm = 12/(33 − 2Nf ) being the anomalous dimension, Nf is the active flavor number, ΛQCD =

0.234 GeV, τ = e2 − 1, F (q2) = [1 − exp(−q2/4m2
t )]/q

2 and mt = 0.5 GeV.
With this ansatz in the homogeneous BSE for a meson M = P,V becomes:

Γ
f g
M (k, P)=

∫ Λ d4q
(2π)4

K f g(k, q; P)Sf (qη) Γ
f g
M (q, P) Sg(qη̄) . (69)

The solutions of the BSA for a pseudoscalar meson with quantum numbers JPC = 0−+ can most
generally be decomposed into four Lorentz covariants made from the Dirac matrices γµ, the relative
momentum kµ and the total momentum Pµ. For the pseudoscalar mesons, we employ the tensor
structures that are not orthogonal with respect to the Dirac trace,

Γ
f g
P (k, P) = γ5

[
iE f g

P (k, P)+ γ · P F f g
P (k, P) + γ · k k · P G f g

P (k, P)+σµνkµPν H f g
P (k, P)

]
, (70)
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where E f g
P (k, P), F f g

P (k, P), G f g
P (k, P) and H f g

P (k, P) are Lorentz-invariant amplitudes.
Likewise, the most general Poincaré-invariant form of the BSE solution for the vector vertex

ΓVµ in the JPC = 1−− vector channel is decomposed into eight Lorentz covariants:

Γ
f g
Vµ(k, P) =

8∑
α=1

Tαµ (k, P) F
f g
α (k, P) . (71)

In Eq. (71), Fα(k, P) are Lorentz invariant amplitudes and Tαµ (k, P) is the orthogonal basis with
respect to the Dirac trace:

T1
µ (k, P) = iγTµ , (72)

T2
µ (k, P) = i[3kTµ (γ · k

T ) − γTµ (k
T )2] , (73)

T3
µ (k, P) = i(k · P)qTµ γ · P , (74)

T4
µ (k, P) = i[γTµ γ · P(γ · k

T ) + kTµ γ · P] , (75)

T5
µ (k, P) = kTµ , (76)

T6
µ (k, P) = (k · P)[γTµ (γ · k

T ) − (γ · kT )γTµ ] , (77)

T7
µ (k, P) = γTµ γ · P − γ · Pγ

T
ν − 2T8

µ (k, P) , (78)

T8
µ (k, P) = k̂Tµ (γ · k̂

T )γ · P . (79)

The transverse projections are VT
µ = Vµ − Pµ(P · V)/P2 with P · VT = 0 for any four-vector Vµ

and k̂T · k̂T = 1. Moreover, the BSA of both, pseudoscalar and vector mesons, also depend on the
angle zk = k · P/|k | |P | which is commonly exploited to expand the eigenfunctions F f g

α (k, zk, P)
into Chebyshev polynomials. Such an expansion allows for a faster convergence in numerical
computations and for an angular analysis of the BSA.

We normalize the BSA with the Nakanishi condition [92] which involves the eigenvalue
trajectory λ(P2) of the BSE solutions :(

∂ ln(λ)
∂P2

)−1
=

∫
d4k
(2π)4

trCD

[
Γ̄
f g
M (k;−P) Sf (kη) Γ

f g
M (k; P)Sg(kη̄)

]
. (80)

The normalization at the mass pole, P2 = −M2
P, is required for the BSA in the calculation of

decay constants and other form factors or transition amplitudes. The weak decay constant of a
pseudoscalar meson is defined by,

fPPµ = 〈0|q̄gγ5γµqf |P(P)〉 , (81)

and can be expressed by the integral:

fPPµ =
Z2Nc
√

2

∫ Λ d4k
(2π)4

TrD

[
iγ5γµSf (kη) Γ

f g
P (k, P) Sg(kη̄)

]
. (82)
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MP Mexp
P εMP [%] fP f exp/lQCD

P ε fP [%]

π(ud̄) 0.140 0.138 1.45 0.094+0.001
−0.001 0.092(1) 2.17

K(us̄) 0.494 0.494 0 0.110+0.001
−0.001 0.110(2) 0

D(cd̄) 1.867+0.008
−0.004 1.864 0.11 0.144+0.001

−0.001 0.150 (0.5) 4.00

Ds(cs̄) 2.015+0.021
−0.018 1.968 2.39 0.179+0.004

−0.003 0.177(0.4) 1.13

ηc(cc̄) 3.012+0.003
−0.039 2.984 0.94 0.270+0.002

−0.005 0.279(17) 3.23

ηb(bb̄) 9.392+0.005
−0.004 9.398 0.06 0.491+0.009

−0.009 0.472(4) 4.03

B(ub̄) 5.277+0.008
−0.005 5.279 0.04 0.132+0.004

−0.002 0.134(1) 4.35

Bs(sb̄) 5.383+0.037
−0.039 5.367 0.30 0.128+0.002

−0.003 0.162(1) 20.5

Bc(cb̄) 6.282+0.020
−0.024 6.274 0.13 0.280+0.005

−0.002 0.302(2) 10.17

Table 3: Masses and decay constants [in GeV] of pseudoscalar mesons. All experimental masses and the
pion and kaon weak decay constants are averaged values by the Particle Data Group [93]. The leptonic
decay constants of the Dd , Ds , Bu and Bs mesons are FLAG 2019 averages [94] and those of the Bc , ηc
and ηb mesons are from Ref. [95]. The relative deviations from experimental values, vexp., are given by
εv = 100% |vexp. − vth. |/vexp..

As already noted, the quark momenta, kη and kη̄ , define momentum-fraction parameters η + η̄ = 1.
Neither the decay constant nor any other physical observables can depend on them owing to Poincaré
covariance. The leptonic decay constant of a vector meson is defined by the amplitude,

fV MV ε
λ
µ = 〈0|q̄gγµqf |V(P, λ)〉 , (83)

where ελµ(P) is the polarization vector of the transverse vector meson which satisfies ελ · P = 0 and
is normalized as ελ∗ · ελ = 3. This can again be expressed by a loop integral:

fV MV =
Z2Nc

3
√

2

∫ Λ d4k
(2π)4

TrD

[
γµSf (kη) Γ

f g
Vµ(k, P) Sg(kη̄)

]
. (84)

Our results for the pseudoscalar and vector meson masses and leptonic decay constants are
tabulated in Tables 3 and 4. In the pseudoscalar channel the experimental masses are reproduced
within 1%, while our calculated decay constants compare very well with experimental or theoretical
reference values. We only note some discrepancy in the case of fBs and fBc . We point out that the
pion and kaon set the scale for the light- and strange-quark masses, respectively, and serve to fix the
parameter combinations, ωuDu and ωsDs. Therefore, no error estimate is give for these mesons,
whereas the theoretical errors for the remaining meson masses are due to a certain insensitivity of
the computed pion and kaon masses with respect to ωu and ωs. The origins of theoretical errors
and the choice of current-quark masses at the renormalization scale µ in the DSE (53) are discussed
in detail in Ref. [19]. The experimental ρ, K∗ and φ masses are also reasonably well reproduced
and we observe very good agreement for the charmed mesons and heavy quarkonia.
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MV Mexp
V εMV [%] fV f exp/lQCD

V ε fV [%]

ρ(uū) 0.730 0.775 5.81 0.145 0.153(1) 5.23

φ(ss̄) 1.070 1.019 5.20 0.187 0.168(1) 11.31

K∗(us̄) 0.942 0.896 5.13 0.177 0.159(1) 11.32

D∗(cd̄) 2.021 2.009 0.60 0.165 0.158(6) 4.43

D∗s(cs̄) 2.169 2.112 2.70 0.205 0.190(5) 7.90

J/ψ(cc̄) 3.124 3.097 0.87 0.277 0.294(5) 5.78

Υ(bb̄) 9.411 9.460 0.52 0.594 0.505(4) 17.62

Table 4: Masses and decay constants [in GeV] of ground-state vector mesons (preliminary without error
estimate). The experimental masses are values listed by the Particle Data Group [93] and the leptonic decay
constants for the ρ, K∗, φ, J/ψ and Υ mesons are extracted from their experimental decay width [93] via
f 2
V =

3mV

4πα2Q2 ΓV→e+e− . The reference weak decay constants of the D∗ and D∗s mesons are those of the ETM
collaboration [96]. Relative deviations as in Table 3.

Finally, let us place emphasis on the fact that our results for the heavy-light mesons hinge on our
choice of a distinct flavor dependence in the interaction function (67). Indeed, the strong asymmetry
in the momentum distribution of the heavy and light quarks within these mesons requires a distinct
treatment of their interaction with a gluon. Moreover, this ansatz also facilitates the calculation of
the quark propagators in the complex momentum plane in Euclidean space [19], where previous
studies [79] were plagued with cuts and singularities in the deep time-like domain.

5. Conclusive remarks

Wehave surveyed a selection of recent developments and outstanding issues over the past decade
that have touched upon hadronic aspects of flavor physics. The common thread of the different
topics we addressed, be it effective Lagrangians and their effective couplings, flavor symmetry and
its breaking patterns or the properties of flavored mesons and quarkonia, is nonperturbative QCD.
Indeed, in computing couplings and form factors we necessarily deal with flavored antiquark-quark
bound states. The nonperturbative aspects of bound states reveal themselves at different mass scales,
where they must be considered individually as well as in conjunction with the other scales of a
given physical problem.

We also explored two symmetries, none of which is apparent in the QCD Lagrangian. Heavy-
quark spin and flavor symmetries emerge only when the heavy sector of QCD is expanded in
terms of inverse powers of the heavy-quark mass. We saw that beyond-leading orders can already
significantly contribute to the breaking of these symmetries. Indeed, nonperturbative calculations
of effective Lagrangian’s couplings in a symmetry-preserving truncation of the DSE and BSE reveal
that SU(3)F flavor symmetry is breached at the order of 20%. While this may be acceptable for
calculations with effective hadron degrees of freedom in the strange sector, the same cannot be said
about SU(4)F as similar calculations demonstrate an order of magnitude larger symmetry-breaking
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effect. Along with the observation that the charm quark is not a heavy enough quark, and therefore
cannot be employed in a reliable expansion of HQET, we conclude that effective Lagrangians based
on charmed meson degrees of freedom must be used judiciously. In particular, flavor-symmetry
breaking in the effective couplings should be accounted for.

At last, we discussed how reliable calculations of heavy-light form factors, couplings and decay
constants require the correct description of the light quark’s propagator as solutions of the DSE or
gap equation, while the meson’s wave functions are obtained from Poincaré-invariant solutions of
the corresponding BSE. The couplings we discussed in here were mostly obtained with simplified
models of these wave function. Their calculation with the heavy-light BSAs presented in Section 4
is in progress and results will be available shortly.
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