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Charmonium production studies in hadronic collisions are a powerful tool for improving our
understanding of quantum chronodynamics (QCD), the theory of the strong interaction. The
production of the charm-quark pair can be described within perturbative QCD, whereas the
evolution of this pair into a colorless bound state involves soft scale processes. In addition,
multiplicity dependent studies of charmonia in both proton-proton (pp) and proton-lead (p–
Pb) collisions can shed light on the role of multiple parton interactions (MPI) for heavy-quark
production. Furthermore, charmonia in small systems are fundamental to understand the properties
of the quark-gluon plasma (QGP) created in heavy-ion collisions. Potential initial-state effects can
be constrained using results in p–Pb, while reference measurements in pp collisions offer a basis
for the vacuum production at the same center-of-mass energy.
The ALICE detector has unique capabilities at the LHC for measuring quarkonia down to zero
transverse momentum. Measurements are carried out at both central and forward rapidity, in the
dielectron and dimuon decay channel, respectively.
In this contribution an overview of the latest results of charmonium production in pp and p–Pb
collisions at several centre-of-mass energies will be presented.
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1. Physics motivations

Charmonia are flavorless mesons consisting of a charm-anticharm quark pair. Studies of
charmonium production in hadronic collisions provide a unique window into the QCD realm,
the theory of the strong interaction. Studying charmonia through proton-proton collisions enables
insight into the production mechanisms at the partonic level, and gives a benchmark for perturbative
QCD and non-perturbative QCD-based models. It also provides a reference for p-Pb and Pb-Pb
studies at the same centre-of-mass energy.

Charmonium studies in p-Pb collisions are important in order to understand effects due to the
presence of cold nuclear matter, such as shadowing modifications due to the nucelar environment
to the parton distribution functions (PDFs), colour glass condensate, parton energy loss and final
state interaction (absorption, comovers). In addition, the investigation of possible collective effects
on charm quarks in p-Pb collisions has become a topic of special interest after the discovery of the
double ridge found in charged-particle correlations at mid- and forward rapidity [1–4].

Furthermore, the study of charmonium production as a function of the charged particle multi-
plicity in small systems allows to investigate how the multiple parton interactions (MPI) contributes
to the production of the charm quarks, as well as the interplay between hard and soft particle
production mechanisms in the same event.

2. Charmonium measurements in ALICE

The ALICE detector provides charmonium detection down to ?T = 0 through either dimuon or
dielectron decay channels at forward (2.5 < H < 4) or midrapidity (|H | < 0.9), respectively.

At midrapidity the charmonium states are reconstructed using the Inner Tracking System (ITS),
which consists of six cylindrical layers of silicon detectors employing different technologies. The
ITS provides high resolution for secondary vertex reconstruction, enabling the measurement of
the fraction of “non-prompt” J/k, originating from beauty-hadron decays. The Time Projection
Chamber provides reconstruction of the tracks, in combination of the ITS, and particle identification
via specific energy loss measurements.

The forward muon spectrometer includes a dipole magnet with an integrated field of 3 T·m,
five tracking stations comprising two planes of cathode pad chambers each, and two trigger stations
consisting of two planes of resistive plate chambers each. The latter allows to trigger on events with
at least a pair of opposite-sign track segments in the muon trigger system, each with a ?T above a
specific threshold. A system of absorbers is used for filtering out hadrons.

3. Selected highlights in pp collisions

Themidrapidity ?T-differential cross sections of prompt J/k at
√
B = 13 and 5 TeV [5], obtained

from the combination of inclusive cross section and non-prompt J/k fraction measurements, are
shown in Fig. 1 in the left and right hand panels, respectively. The prompt J/k cross sections
at
√
B = 5 TeV are found to be consistent with midrapidity measurements performed at the same

centre-of-mass energies by ATLAS [6] and CMS [7] collaborations. The measurements at both
centre-of-mass energies are compared with theoretical calculations performed using non-relativistic
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quantum chromodynamics (NRQCD) based models and the improved colour evaporation model
(CEM). Both sets of calculations show good agreement with the data within the uncertainties,
although the large uncertainties of the model calculations prevent any strong conclusion.

Figure 1: ALICE cross section measurements of prompt J/k for 5.02 TeV (left) and 13 TeV (right), compared
to theoretical model calculations [5]. Results at

√
B = 5.02 TeV are compared with CMS [7] and ATLAS [6]

measurements at high ?T. Bottom panels show ratios of the models to ALICE results.

The forward rapidity J/k ?T-differential cross section measurements at different
√
B are shown

in the left-hand panel of Fig. 2 [8]. The comparison indicates a hardening of the spectra with
increasing centre-of-mass energy. The k(2S) ?T-differential cross section at

√
B = 13 TeV is

compared to NRQCD calculations with FONLL model calculations added on top in the right-hand
panel of Fig. 2 [8]. There is a good agreement observed between the model and the data for the
measured cross sections.

4. Selected highlights in p-Pb collisions

In Fig. 3, the nuclear modification factor 'pPb measured in p-Pb collisions at √BNN = 8.16 TeV
is shown as a function of Hcms, the rapidity in the centre-of-mass system, for both J/k and k(2S) [12].
The 'pPb is defined as the production cross section in proton-nucleus collisions divided by that in
pp collisions at the same energy, scaled by the atomic mass number A. It is used to quantify cold
nuclear matter effects and one would expect 'pPb to be equal to one if there were no nuclear effects.
Both J/k and k(2S) show similar suppression at forward rapidity. However, at backward rapidity
the k(2S) is much more suppressed than J/k. In order to reproduce the k(2S) in models, one needs
to include final state interactions with the surrounding medium.

In the left (right) panel of Fig. 4 the cross section ('pPb) of the prompt J/k measured in p-
Pb collisions at √BNN = 5.02 TeV is shown together with forward and backward rapidity results
from LHCb [13]. The cross section is compared to models including nuclear shadowing based on
different sets of nuclear PDFs. The 'pPb is compared to model predictions implementing different
cold nuclear matter (CNM) effects. Both measurements sit in the upper band of the models.
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Figure 2: Left: inclusive J/k cross sections for pp collisions at several centre-of-mass energies measured at
forward rapidity as a function of the transverse momentum [8]. Right: inclusive k(2S) cross section at

√
B =

13 TeV compared to models [9] [10] [11]
.

Figure 3: 'pPb as a function of Hcms for k(2S) and J/k p–Pb collisions at √BNN = 8.16 TeV [12]. Theoretical
models are shown for comparison (references on the plot).

5. Conclusions and future perspectives

Selected charmonium measurements in pp and p-Pb collisions performed by the ALICE Col-
laboration are presented. In pp collisions at

√
B = 5 and 13 TeV theoretical models describe within

uncertainties prompt J/k cross sections measured at midrapidity. No conclusion can be drawn
due to the large model uncertainties. At forward rapidity k(2() cross section is compatible with
NRQCD based models. In p-Pb collisions at √BNN = 8.16 TeV theoretical models describe well the
charmonium results at forward rapidity, although stronger suppression of the k(2S) with respect to
J/k at backward rapidity necessitates final state interactions included in the calculations. Prompt J/k
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Figure 4: The midrapidity production cross section and '?%1 of the prompt J/k in the left and right hand
panels, respectively. Results are compared with LHCb measurements [13] as well as with theoretical models
(see [14] and references therein).

cross section and 'pPb measured at midrapidity in p-Pb at √BNN = 5.02 TeV are found compatible
with theoretical calculations, sitting in the upper band of the models.

Run 3 and Run 4 will bring great opportunities for charmonium measurements in the near
future as the ALICE detector is going through a major upgrade [15]. With expected integrated
luminosities of 200 pb−1 in pp collisions at

√
B = 14 TeV and 500 nb−1 in p-Pb collisions √BNN =

8.8 TeV, as well as with the improved spatial resolution provided by the upgraded ITS, existing mid-
rapidity charmoniummeasurements will be improved significantly and a set of new observables will
become accessible [16, 17]. In addition, reconstruction of secondary vertices at forward rapidity
will be enabled through the new Muon Forward Tracker.
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