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A naive application of the heavy quark expansion (HQE) yields theory estimates for the decay
rate of neutral � mesons that are four orders of magnitude below the experimental determination.
It is well known that this huge suppression results from severe GIM cancellations. We find that
this mismatch can be solved by individually choosing the renormalisation scale of the different
internal quark contributions. For 1 and 2 hadron lifetimes, as well as for the decay rate difference of
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uncertainties, while we get enlarged theory uncertainties for the semileptonic CP asymmetries in
the � system.
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1. Introduction

Charm has played a very important role in the structure of the SM, since its discovery as
predicted by the GIM Mechanism [1]. Today we have a huge amount of data by LHCb [2], BESIII
[3] and Belle II [4], however, the theoretical understanding needs to be improved in order to use them
efficiently. A good example is the first discovery by the LHCb collaboration of CP violation in the
charm system [5]. They announced an experimental measurement of Δ��% = (−15.4±2.9) ×10−4

which differs by 5.3f from zero. It is currently not clear if this measurement of Δ��% requires
BSM explanations [6, 7] (partly based on the calculation of Ref. [8]) or it can still be explained
within the SM [9–12].
One of the biggest puzzles of charm physics is the mixing of �0 meson. Earlier this year LHCb
announced new measurements [13] of G = Δ"�

Γ
�0

and H = ΔΓ�
2Γ
�0

and by taking them into account the
HFLAV [14] average reads now (in the case of allowing CP violation):

G =
Δ"�

Γ�0
= (0.409+0.048

−0.049)% , H =
ΔΓ�

2Γ�0
= 0.615+0.056

−0.055% , (1)

where Δ"� is the mass difference between the two mass eigenstates of the �0 meson and ΔΓ� is
the corresponding decay width difference. Expanding these in a series of small phase q�12 we get
the following expressions [15]:

Δ"� = 2|"�
12 | · (1 + O((q

�
12)

2)) ,
ΔΓ� = 2|Γ�12 | · (1 + O((q

�
12)

2)) , (2)

q�12 = arg

(
−
"�

12

Γ�12

)
,

where "12 and Γ12 are the non-diagonal elements of the mixing matrix of the �0 − �0 system.
Using these we can now define

G12 =
2 |"12 |
Γ�0

, H12 =
|Γ12 |
Γ�0

(3)

which unlike G and H they depend only on one of the non-diagonal elements.
Theoretical predictions of G and H though can cover a huge range of values, differing by several
orders of magnitude, see e.g. [16, 17]. Future measurements will not only increase the precision of
these quantities but also give stronger bounds or even a measurement of the CP violation in mixing
[18], encoded in the phase q12 which currently lies within [−2.5◦, 1.8◦].

2. D-mixing in HQE

The heavy quark expansion (HQE) [19–25] (see Ref. [26] for a recent overview) describes
the total decay rate of heavy hadrons and the decay rate difference of heavy neutral mesons as
an expansion in inverse powers of the heavy quark mass. This theory is proven to work great for
the B system (where the expansion parameter Λ/<1 is small) however it has been challenged if it
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could produce similar results in the charm system where the expansion parameter is increased by
approximately a factor of 3.
In the table below you can see how good agreement there is between experiment and HQE in the B
system [27–29]:

HFLAV 2019 HQE 2019
g (�B)
g (�3) 0.994(4) 1.0007(25)
g (�+)
g (�3) 1.076(4) 1.082+0.022

−0.026
g (Λ1)
g (�3) 0.969(6) 0.935(54)
ΔΓ�B 0.091(13)ps−1 0.090(5)ps−1

In the charm system if we consider the lifetime ratio g(�+)/g(�0) where NLO-QCD corrections
to the dimension-six contribution [30] and values for the non-perturbative matrix elements of the
4-quark operators [31] are known, there is agreement between theory and experiment even with big
theoretical uncertainties:

g(�+)
g(�0)

�����PDG

= 2.536(19) , g(�+)
g(�0)

�����HQE 2017

= 2.7+0.7−0.8 . (4)

So what is going so wrong in the �-mixing?

In the present work as in the original paper [32] we will focus only on the calculation of Γ12
and not on "12.Within the HQE framework Γ12 can be expanded as:

Γ12 =
[
Γ
(0)
3 +

UB

4c
Γ
(1)
3 + . . .

] 〈&6〉
<3
2

+ . . . (5)

where the ellipsis stands for terms of higher order. The above expression can be shown diagram-
matically in Fig. 1. The product of the Δ� = 1 operators from the effective Hamiltonian ("full"
theory) is matched into a series of local Δ� = 2 operators &= of increasing dimension = ≥ 6, with
the short distance coefficients denoted by Γ(8)

=−3. The expressions for Γ(8)3 can be simply obtained
from the corresponding ones for �-mixing given in Refs. [33–38] while the matrix elements of the
dimension-six operators have been determined in e.g. Refs. [31, 39]. The experimental result of
the decay rate difference leads to the following bound

ΔΓ
Exp
�
≥ 0.027 ps−1, (6)

at one standard deviation. Based on that we will focus on the following quantity1:

Ω =
2 |Γ12 |SM

0.027 ps−1 (7)

A value of Ω smaller than 1 indicates that we are unable to describe �-mixing within 1f. A naive
application of the HQE leads to Ω = 3.4 · 10−5 at LO-QCD and Ω = 6.2 · 10−5 at NLO-QCD. As
we can see in both cases our prediction is around 5 orders of magnitude smaller than one. For the
results stated above and the ones following we have used the PDG [40] values for all the masses
as well as the strong coupling, CKM elements are from [41], the non perturbative matrix elements
from [31] and finally the decay constant from [42].

1The results shown in our paper[15] are using a bound of 0.028 as the new average was not released yet. This however
will not change the results in any significant way.
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Figure 1: (a) Diagrams describing the mixing of neutral � mesons via intermediate BB̄, B3̄, 3B̄ and 33̄ states
in the "full" theory at LO-QCD (left) and NLO-QCD (right). The crossed circles denote the insertion of
Δ� = 1 operators of the effective Hamiltonian describing the charm-quark decay. The dependence on the
renormalisation scale `1 in theWilson coefficients cancels against the `1 dependence of the QCD corrections.
(b) Diagram describing mixing of neutral � mesons at NLO-QCD in the HQE. The full dot indicates the
insertion of Δ� = 2 operators. The dependence on the renormalisation scale `2 cancels between the QCD
corrections to the diagram and the matrix elements of the corresponding operators.

3. GIM

The calculation of Γ12 can be expressed as:

Γ12 = −
(
_2
B Γ

BB
12 + 2_B_3 ΓB312 + _

2
3 Γ

33
12

)
= −_2

B

(
ΓBB12 − 2ΓB312 + Γ

33
12

)
+ 2_B_1

(
ΓB312 − Γ

33
12

)
− _2

1Γ
33
12 . (8)

where _@ = +2@+∗D@ and Γ@@
′

12 denotes the contribution from the diagrams with internal quark pair
@@′. The peculiar feature of the second expression is that in terms of absolute size, the CKM
dominant factor _2

B multiplies the doubly GIM suppressed term, the CKM suppressed factor _B_1
multiplies the GIM suppressed term and the doubly CKM suppressed factor _2

1
multiplies a term

with no GIM suppression. This results in all three terms of Eq.(8) having similar size:

Γ12 =

(
2.08 · 10−7 − 1.34 · 10−11�

)
(1st term)

−
(
3.74 · 10−7 + 8.31 · 10−7�

)
(2nd term)

+
(
2.22 · 10−8 − 2.5 · 10−8�

)
(3rd term). (9)

This is something observed only in �-mixing and not e.g. in �-mixing where the CKM dominant
term multiplies the term with no GIM suppression.

It is also interesting to note that if we expand the terms of Eq.(8) in I = <2
B/<2

2 the GIM sup-
pression seems to lifted by an order of this small parameter if we include NLO-QCD corrections
[43], hinting that maybe if higher orders in QCD are calculated the GIM suppression can be less
dominant.

To explain the big difference between HQE and experiment in �-mixing several solutions have
been proposed: 1) Higher orders in HQE could be less affected by GIM suppression [44–46]. For
this a full determination of dimension nine and twelve is necessary (first estimates of dimension
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nine can be found in [47]), 2) Quark hadron duality, as it has been shown in [48] that a duality
violation of only 20% could suffice to reproduce the experimental value (see also [49] for a recent
investigation), 3) The HQE is not applicable in the charm system and different methods like sum-
ming over exclusive decay channels should be used instead, see e.g. [50–52] and 4) Contributions
from BSM physics could also enhance the decay difference, see e.g. [53–55].

4. Scale setting

In the calculation of Γ12 two renormalisation scales are arising, see Fig. (1). The scale `1 at
which the Δ� = 1 Wilson coefficients of the effective Hamiltonian and the QCD corrections of
the ’full’ theory are computed and the scale `2 which is introduced by the radiative corrections to
the HQE diagrams and cancels with the scale dependence of the matrix elements of the Δ� = 2
operators. We are not discussing any further the scale dependence on `2 as this cancellation is very
effective. The reduction of the `1-dependence from LO-QCD to NLO-QCD in the D-system can
be seen only if we consider the independent contributions to Γ12 i.e. ΓBB12, Γ

B3
12 and Γ3312 which can

be understood as another effect of the GIM cancellations. This is depicted in Fig. (2). In a naive

LO

NLO

1.0 1.5 2.0 2.5 3.0 3.5 4.0

4.×10-7

6.×10-7

8.×10-7

1.×10-6

1.2×10-6

LO

NLO

1.0 1.5 2.0 2.5 3.0 3.5 4.0

1.3

1.4

1.5

1.6

1.7

1.8

Figure 2: Comparison of the `1-dependence of |Γ12 |(left) and |ΓBB12 |(right) at LO-QCD and NLO-QCD

calculation we set the scale `1 = <2 to minimise terms of the form UB (`1) ln(`2
1/<

2
2) and in order

to estimate uncertainties due to higher orders we vary the scale from 1 GeV to 2<2 .
Here we propose two alternative ways of treating the renormalisation scale. Both of them are based
on the idea that different internal quark pairs contribute to different decay channels of the �0(�0)
meson i.e. an BB to a  + − final state and B3 to a  −c+ final state. For each of these observables
the choice of the renormalisation scale can be decided independently, even though traditionally
they are chosen to be equal to <2 . For the remaining of the paper we introduce the parameters
`BB1 , `

B3
1 , `331 which correspond to the scale used in the computation ofΓBB12, Γ

B3
12 andΓ3312 respectively.

The two alternative scenarios for the renormalisation scale are:

• `BB1 = `331 and `B31 are set to <2 but are varied independently between 1 GeV and 2<2 . Here
we set `BB1 = `331 since  + − and a c+c− are not fully independent but could be related
through re-scattering.

5
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• We set the two scales to different values according to the available phase space. For BB we
will use `BB1 = <2 − 2n , for B3 `B31 = <2 − n and for 33 `331 = <2 where n is a parameter
related to the kinematics of the decays.

If n is not too large then both methods will give results inside the traditional uncertainties for
ΓBB12, Γ

B3
12 and Γ3312 but clearly they will break the severe GIM suppression shown in Eq. (8). The first

method gives a significantly enhanced range of values forΩ: Ω ∈ [4.6 · 10−5, 1.4] which covers the
experimental value! Moreover by scanning independently the two available scale parameters out of
the 121 values only 11 of them that correspond to identical scales give Ω < 0.001 while 84 of them
produce Ω > 0.1.Throughout this paper we have used the "( renormalisation scheme and HQET
results for the computation of the matrix elements, however, similar results are produced if we use
the Pole scheme or lattice results. In all cases Ω > 1 can be reached.

For the second method, we can estimate the parameter n as the strange quark mass i.e. n =

<B ≈ 0.1 �4+ or comparing the energy release of �0 →  + −, "�0 − 2" + = 0.88 GeV, with
that of �0 → c+c−, "�0 − 2"c+ = 1.59 GeV we might expect that n ≈ 0.35 GeV. As can be seen
in Fig.(3) the experimental value can be achieved for n ≈ 0.2 GeV.

0.00 0.05 0.10 0.15 0.20 0.25 0.30

10-4

0.01

1

100

Figure 3: Comparison of the n dependence of Ω at LO-QCD (blue) and NLO-QCD (pink) for different
values of `: the dashed line corresponds to ` = <2 while the two solid lines to ` = 1 GeV and ` = 2<2 .

Finally we should test this method with other HQE predictions and see how it affects them. For
lifetime calculations (for both charm and bottom hadrons) as well as the decay rate difference
in �B-mixing, ΔΓB no GIM-like cancellations occur so this alternative scale setting will produce
results that will be covered by the current theoretical uncertainties. However less pronounced GIM
suppressions appear in the semi-leptonic CP asymmetries in �B-mixing. In the SM we get:

Re

(
Γ
@

12
"
@

12

)SM

= −
ΔΓ@

Δ"@
=

{
−(49.9 ± 6.7) · 10−4 @ = B

−(49.7 ± 6.8) · 10−4 @ = 3
,

Im

(
Γ
@

12
"
@

12

)SM

= 0
@

B;
=

{
(+2.2 ± 0.2) · 10−5 @ = B

(−5.0 ± 0.4) · 10−4 @ = 3
. (10)

6



P
o
S
(
C
H
A
R
M
2
0
2
0
)
0
3
3

Renormalisation Scale Setting in D-mixing Christos Vlahos

while by performing our n analysis:

n (GeV) ΓB12/"
B
12 Γ312/"

3
12

0. −0.00499 + 0.000022� −0.00497 − 0.00050�
0.2. −0.00494 + 0.000023� −0.00492 − 0.00053�
0.5. −0.00484 + 0.000026� −0.00482 − 0.00059�
1.0 −0.00447 + 0.000037� −0.00448 − 0.00084�
1.5. −0.00287 + 0.000091� −0.00309 − 0.0021�

where the blue entries indicate values that lie within the known theoretical uncertainties. As we
can see the real part stays within the uncertainties for values of n up to 1 GeV while the imaginary
part can be increased by almost 100%.

5. Conclusion

As we can see by just altering the traditional scale setting we can obtain values for H with a
much larger range that includes the experimental result. The quantity H can be approximated as

H = (HB3 + HB3) − (HBB + H33) (11)

if we take the approximation _B ≈ −_3 in the first part of Eq. (8). Each of the two terms is larger
than the experimental value for H and has an implicit uncertainty of at least 20%. By taking their
numerical difference we end up with a value between [10−4, 10−5]. By taking such a result at its
face value, we implicitly assume a precision of 10−4 . . . 10−5 in the individual terms which is of
course unrealistic. We would like to point that this method still respects the GIM mechanism since
for vanishing strange quark mass the parameter n vanishes as well. For a further understanding
however it is important to have a precise calculation of higher order corrections in the HQE as well
as a complete computation of NNLO-QCD corrections of the leading term, see e.g. [56–58]. For
a prediction of the CP violation in mixing the contribution from "12 is missing. This could be
obtained with the help of dispersion relations, see e.g. [51, 59, 60].
Finally this procedure does not affect most other quantities like g(�+)/g(�0), 1 hadron lifetimes
and ΔΓB giving results within the current theoretical uncertainties, but it affects the semi-leptonic
CP asymmetries, giving enhanced ranges:

03B; ∈ [−9.2;−4.6] · 10−4, 0BB; ∈ [2.0; 4.0] · 10−5 . (12)
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