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In this work we study the decays τ− → (Kπ)−ντ using an effective field theory constructed with
dimension six operators with the SM degrees of freedom. The explicit framework is the SMEFT
at low energies. Following this framework we have obtained three main results:
(i) we have confirmed that it is impossible to understand the BaBar CP anomaly associated with the
channel τ → KSπντ . We have found an upper bound for the NP contribution slightly larger than
in Phys. Rev. Lett. 120(2018) no.14, 141803, but still irrelevant compared to the experimental
uncertainty by four orders of magnitude approximately;
(ii) we have shown that the bump present in the spectrum measured by the Belle experiment for
the KSπ

− invariant mass distribution near the threshold cannot be explained by heavy NP;
(iii) we constrain the NP scalar and tensor effective couplings using the decays τ− → (Kπ)−ντ
and we find that they are competitive with other traditional low energy probes like hyperon decays
for the scalar and tensor cases and kaon decays for tensorial interactions (we cannot compete for
the case of non-standard scalar interactions in Kaon (semi)leptonic decays).
Besides these three main results, we have also studied the effect of NP in several interesting observ-
ables like Dalitz plots, decay spectrum and forward-backward asymmetry. All these observables
were calculated in the SM case as well, in order to be able to compare the way in which NP could
manifest.
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1. Introduction

This work is based in an article that we published recently, for more details see ref. [1].
It is a well known fact that Tau physics is a powerful tool for precision electroweak studies and

also a clean low energy QCD laboratory. In this work our purpose is to show that Tau physics is
also a very useful probe to study potential NP effects. In particular we want to show how it can be
used to study the effects induced by heavy NP in the following observables:

• Check the results in ref. [2], which disprove earlier claims [3–5] that tensor interactions
could explain the BaBar CP anomaly in τ → KSπντ decays [6]. This corresponds to the
measurement of ACP, defined in the following way:

ACP =
Γ(τ+ → π+KS ν̄τ) − Γ(τ

− → π−KSντ)

Γ(τ+ → π+KS ν̄τ) + Γ(τ− → π−KSντ)
= −3.6(2.3)(1.1) × 10−3 , (1)

which disagrees remarkably with the SM prediction ACP = 3.32(6) × 10−3, driven by neutral
kaon mixing [7, 8], probed with high accuracy in semileptonic kaon decays [9]. In fact,
the SM prediction is slightly modified by the experimental conditions corresponding to the
reconstruction of the KS at the B-factory, yielding ACP = 3.6(1)×10−3 [10], which increases
the discrepancy at the 2.8 σ level. As a novelty of our treatment, we will discuss the
uncertainty induced on ACP by the error of the tensor form factor modulus, while for its
phase uncertainty we will follow ref. [2]. This point is extremely important because the CP
violation present in the SM [11] is clearly insufficient to understand the baryon asymmetry
of the universe [12–14] so that any hint of NP involving CP violation becomes a candidate
for providing with a clue to understand the enormous matter-antimatter imbalance. With
respect to this BaBar anomaly, however, the related Belle measurement [15] of a binned CP
asymmetry in the same decay channel analyzing the decay angular distributions is compatible
with zero, as expected in the SM with a permille level precision. An explanation of this
discrepancy is needed, and this is precisely one of the goals of this work.

• Three data points at the beginning of the KSπ
− spectra measured by Belle [16] have been

excluded from the reference fits or signalled as controversial in the dedicated analyses [17–
23, 55] and are at variance with the prediction [25]. To our knowledge, only Ref. [26] was
able to describe these data points due to the effect on the scalar form factor of the longitudinal
correction to the K∗(892) propagator induced by flavor symmetry breaking 1. We will study
if it is possible to explain these conflicting data points by the most general description of
heavy NP contributions modifying the τ− → ūsντ decays in the SM.

• Within an effective field theory analysis of possible non-standard charged current interactions,
semileptonic tau decays [27–29] have been proved competitive with the traditional semilep-
tonic decays involving light quarks [30–40], like nuclear beta or leptonic and radiative pion
decays. In this context, for the Cabibbo-suppressed sector, hyperon semileptonic decays

1As we will recall in section 4, the scalar form factor contribution that we employ [56] was obtained as a result of
analyzing strangeness-changing meson-meson scattering [57] within Chiral Perturbation Theory [43, 44] with resonances
[45, 46], accounting for the leading flavor symmetry breaking.
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[34, 37] cannot compete with (semi)leptonic Kaon decays [36], given the (very accurately
measured) dominant branching fractions of the latter and the suppressed ones (at most at the
permille level) of the former. This intuitive reasoning suggests that strangeness-changing
tau decays can also give non-trivial bounds on non-standard charged current interactions, al-
though it is not likely that at a competitive level with K`(2,3) decays (however, if we restrict to
tensor interactions only, we will see that our couplings are competitive with the ones coming
from K`(2,3) decays). The present work will make these statements precise.

2. Effective theory analysis of τ− → ντūs

The lepton number conserving effective Lagrangian density constructed with dimension
six operators and invariant under the local SU(3)C ⊗ SU(2)L ⊗ U(1)Y SM gauge group has the
following form [41, 42],

L(e f f ) = LSM +
1
Λ2

∑
i

αiOi −→ LSM +
1
v2

∑
i

α̂iOi , (2)

with α̂i = (v2/Λ2)αi the dimensionless couplings encoding NP at a scale of some TeV. Note that we
have not included the Weinberg operator which has dimension five since it does not contribute to
our processes. The Weinberg operator changes the lepton number in two units (∆L = 2) and lepton
number violation is not present in our decays.

We can explicitly construct the leading low-scale O(1 GeV) effective Lagrangian (which has
SU(3)C ⊗ U(1)em local gauge symmetry) for the strangeness-changing semi-leptonic transitions
upon integrating out the heavy degrees of freedom [30, 31],

Lcc =
−4GF
√

2
Vus

[
(1 + [vL]``) ¯̀Lγµν`L ūLγ

µsL + [vR]`` ¯̀
Lγµν`L ūRγ

µsR

+ [sL]`` ¯̀
Rν`L ūRsL + [sR]`` ¯̀

Rν`L ūLsR

+ [tL]`` ¯̀
Rσµνν`L ūRσ

µνsL
]
+ h.c. ,

(3)

where GF is the tree-level definition of the Fermi constant, L(R) stand for left(right)-handed chiral
projections and σµν = i [γµ, γν] /2. Note that if we set vL = vR = sL = sR = tL = 0, we recover
the SM Lagrangian for the strangeness-changing semileptonic tau decays, with momentum transfer
much smaller than the MW scale. Right-handed and wrong-flavor neutrino contributions were
neglected in equation (3) since they do not interfere with the SM amplitudes and do not contribute
at leading order in the NP effective coefficients.

Besides Lorentz invariance, the only assumptions behind eq. (3) are the local gauge symmetries
at low-energies (U(1)em and SU(3)C of electrodynamics and chromodynamics, respectively) and
the absence of light non-SM particles.

It is convenient to recast the spin-zero contributions in terms of currents with defined parity
(scalar and pseudoscalar) in the following way

Lcc = −
GFVus
√

2
(1 + εL + εR)

[
τ̄γµ(1 − γ5)ν` · ū[γµ − (1 − 2ε̂R)γµγ5]s

+ τ̄(1 − γ5)ν` · ū[ε̂s − ε̂pγ5]s + 2ε̂T τ̄σµν(1 − γ5)ν` · ūσµνs
]
+ h.c. ,

(4)

3
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where: εL,R = vL,R, εs = sL + sR, εp = sL − sR, and εT = tL . In eq. (4) we have particularized
the Lagrangian for the tau lepton case (` = τ), and we have also introduced the convenient notation
ε̂i = εi/(1 + εL + εR) [27] for i = R, S, P,T 2. In this way, our Lagrangian in eq. (4) is equivalent to
the one in eq. (9) of Ref. [2] working at linear order in the epsilon Wilson coefficients.

3. Semileptonic τ decay amplitude

In this section we calculate the decay amplitudes corresponding to the τ− → K̄0π−ντ and
the τ− → K−π0ντ decays. The first thing to note is that due to the parity of pseudoscalar mesons,
only the vector, scalar and tensor currents give a non-zero contribution to the decay amplitude, as
shown in the following equation 3 4

M =MV +MS +MT

=
GFVus

√
SEW

√
2

(1 + εL + εR)[LµHµ + ε̂SLH + 2ε̂T LµνHµν] ,
(5)

where the leptonic currents have the following structure (p and p′ are the momenta of the tau lepton
and its neutrino, respectively),

Lµ = ū(p
′

)γµ(1 − γ5)u(p) ,

L = ū(p
′

)(1 + γ5)u(p) ,

Lµν = ū(p
′

)σµν(1 + γ5)u(p) ,

(6)

and the vector, scalar and tensor hadronic matrix elements for the case of the τ− → K̄0π−ντ decay,
are defined as follows

Hµ = 〈π−K̄0 | s̄γµu|0〉 = QµF+(s) +
∆Kπ

s
qµF0(s) , (7)

H = 〈π−K̄0 | s̄u|0〉 = FS(s) , (8)

Hµν = 〈π−K̄0 | s̄σµνu|0〉 = iFT (s)(p
µ
K pνπ − pµπpνK ) , (9)

where qµ = (pπ + pK )µ, Qµ = (pK − pπ)µ −
∆Kπ

s qµ, s = q2, and ∆i j = m2
i − m2

j .
The hadron matrix elements H, Hµ and Hµν were decomposed in terms of the allowed Lorentz

structures, taking into account the discrete symmetries of the strong interactions, and a number of
scalar functions of the invariant mass of the Kπ system: the FS(s), F+(s), F0(s) and FT (s) form
factors; which encode the details of the hadronization process.

2We note that this reshuffling is not convenient when comparing neutral and charged current processes and also when
analyzing different semileptonic tau decays with an odd and an even number of pseudoscalar mesons, respectively [29].
Since εi = ε̂i at linear order in these coefficients, we may use εi instead of ε̂i when comparing to works which use the
former instead of the latter.

3Eq.(5) displays clearly that the renormalization scale dependence of the Wilson coefficients ε̂i needs to be cancelled
by the one of the hadron matrix elements. As it is conventional, both are defined in the MS scheme at µ = 2 GeV.

4For convenience, the short-distance electroweak correction factor SEW [47–54] is written as an overall constant,
although it only affects the SM contribution. The error of this simplification is negligible working at leading order in the
ε̂i coefficients [27, 28].
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The τ− → K−π0ντ decay is completely analogous. Neglecting (tiny) isospin corrections, the
only difference is given by the Clebsch-Gordan flavor symmetry factor of

√
2 between both decay

channels, that is
√

2FK−π0

0,+,T (s) = F K̄0π−

0,+,T (s).
From equations (6) one can easily see that the vector and the scalar currents are related through

the Dirac equation, to see this, let us multiply the leptonic vector current by qµ

qµLµ = qµū(p′)γµ(1 − γ5)u(p)

= (pτ − pν)ū(p′)γµ(1 − γ5)u(p)

= ū(p′)(/pτ − /pν)(1 − γ
5)u(p)

= ū(p′)(1 + γ5)Mτu(p) ,

(10)

therefore, we find the following relation

L =
Lµqµ

Mτ
. (11)

Similarly, one can find a relation between the vector and the scalar hadronic matrix elements by
taking the four-divergence of equation (7). This yields

FS(s) =
∆Kπ

ms − mu
F0(s) . (12)

Taking into account the previous two equations, we conclude that the scalar and vector contributions
in eq. (5) can be treated jointly by doing the convenient replacement

∆Kπ

s
→
∆Kπ

s

[
1 +

sε̂s
Mτ(ms − mu)

]
. (13)

Obtaining the three independent form factors (F0(s), F+(s) and FT (s)) using as much experimental
and theoretical knowledge as possible is the subject of the next section.

4. Hadronization of the scalar, vector and tensor currents

In this section we study the scalar, vector and tensor form factors. These are crucial in this
work since they are needed SM inputs for binding the non-standard interactions. Therefore, it is
fundamental to obtain them reliably (including associated errors) in order to have precise NP limits.
We calculate the form factors using chiral perturbation theory, dispersion relations and lattice data.
For the scalar and vector form factors this approach is discussed in refs. [19, 20, 55, 56]. We
construct the tensor form factor following ref. [28] where an analogous work for the τ− → π−π0ντ
channel was done. This tensor form factor is very special in this work. As we will see, it is
connected with the ACP observable that we introduced in section 1 and that we will study in much
more detail in section 6.

We start our discussion with a brief reminder of the approach employed for the scalar form
factor, F0(s). In a series of papers [56–60] an analysis for meson-meson scattering within Chiral
Perturbation Theory with resonances for strangeness-changing coupled-channels was carried out
and very precise information on the corresponding scalar form factors, light quarkmasses and related

5
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chiral low-energy constants was obtained. We benefit from that analysis here 5. In particular, we
employ the update presented in Ref. [60] for the dispersive representation of the Kπ channel,
together with its corresponding uncertainties 6.

Now we turn to the vector form factor F+(s). In refs. [19, 20, 55], a dispersion relation for
F+(s) was formulated and it was seen that a thrice-subtracted dispersion relation was optimal:

F+(s) = exp

[
α1s +

α2
2

s2 +

∫ ∞

sπK

ds
′ δ

1/2
1 (s)

(s′)3(s′ − s − iε)

]
, (14)

where α1, α2, and the one to set F+(0) = 1 are the three subtraction constants, and sπK =
(mK̄0 + mπ−)

2. Eq. (14) shows that each additional subtraction in the dispersion relation gives
rise to a further suppression factor 1/s′ in the integrand, enhancing the relative importance of the
low-energy input.

Finally, we study the hadronization of the tensor current, which was presented in equation (9).
We will start with the calculation of this matrix element using Chiral Perturbation Theory. This
will give us its normalization at zero-momentum transfer (equivalently, it will fix the first –and only
in this case– subtraction constant). The energy dependence will be obtained solving numerically
the dispersion relation, where the input phase corresponds to the one of the vector form factor in
the elastic region [2].

The appropriate effective Lagrangian according to Ref. [62] is shown in the following equation,

L4 = Λ1〈t
µν
+ f+µν〉 − iΛ2〈t

µν
+ uµuν〉 + Λ3〈t

µν
+ t+µν〉 + Λ4〈t

µν
+ 〉

2 , (15)

where tµν+ = u†tµνu† + utµν†u, and uµ = i[u†(∂µ − irµ)u − u(∂µ − i`µ)u†]. The non-linear represen-
tation of the pseudo-Goldstone bosons is u = exp

(
i√
2F
φ
)
where F is the pion decay constant in the

chiral limit, and `µ and rµ are left- and right-handed sources (also appearing in the operator with
coefficient Λ1 through f µν+ = uFµν

L u† + u†Fµν
R u via the familiar field-strength tensors Fµν

L,R). The
symbol 〈...〉 denotes a trace in flavour space. The Λi are (real) low-energy constants which cannot
be fixed by symmetries alone.

The explicit form of φ is given as follows:

φ =

©­­­­«
π0+ηq
√

2
π+ K+

π−
−π0+ηq
√

2
K0

K− K
0

ηs

ª®®®®¬
, (16)

where ηq and ηs are the non-strange and strange components of the η − η′ mesons (see e. g. eqs.
(9) and (10) in ref. [63] and related discussion, we have used the excellent approximation π3 ∼ π0

which comes from neglecting the isospin-suppressed mixing of the neutral pion with the η − η′

mesons [64]).
At the quark level (with corresponding field ψ), the tensor current has the form ψ̄σµν t̄µνψ,

5We thank Matthias Jamin for providing us with these data.
6For the analysis of the Kπ spectra near threshold it is particularly important to employ a scalar form factor that is

consistent with the information coming from S-wave Kπ scattering (including the coupled channels Kη and Kη′). The
scalar form factor obtained in Ref. [60] is included in the RChL version of TAUOLA [61], but not in other releases.

6
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where according to Ref. [62], the tensor source (t̄µν) is related to its chiral projections (tµν and
tµν †) by means of

tµν = PµνλρL t̄λρ, 4PµνλρL = (gµλgνρ − gµρgνλ + iεµνλρ) . (17)

Now let us compute the functional derivative of eq. (15) with respect to t̄αβ . The first thing to
note is that only the operator with coefficient Λ2 contributes to the decays we are analyzing,

δL

δt̄αβ
= −iΛ2

δ

δt̄αβ
〈tµν+ uµuν〉 . (18)

Putting the left and right sources to zero, expanding u in powers of φ and using the first of eqs. (17)
we obtain,

δL

δt̄αβ
=
−2iΛ2

F2
δ

δt̄αβ

[(
PµνλρL t̄λρ + t̄λρPµνλρR

)
∂µφ∂νφ

]
= −

iΛ2

F2 [∂
αφ, ∂βφ] . (19)

In the calculation of the matrix element i〈π0K− | ∂L∂t̄αβ
|0〉 we need the element (1, 3) of the

previous matrix, which yields:

i
〈
π0K−

��� δL
δt̄αβ

���0〉 = Λ2
√

2F2

(
pαK pβ0 − pα0 pβK

)
. (20)

From the same matrix element we obtain:

i
〈
π−K̄0

��� δL
δt̄αβ

���0〉 = Λ2

F2

(
pαK pβ− − pα−pβK

)
, (21)

which checks explicitly the relative factor of 1√
2
between thematrix elements for both decay channels.

As anticipated earlier, the value ofΛ2 is not restricted by symmetry requirements and cannot be
fixed from phenomenology. Fortunately, the lattice QCD evaluation of Ref. [65] found f K̄

0π−

T (0) =
0.417(15). This, together with the fact that F K̄0π−

T (0) = Λ2
F2 implies that Λ2 = (11.1 ± 0.4) MeV,

that we will use in our numerical analysis. This value is consistent within one sigma with the one
employed in Ref. [28] for the ππ channel.

Unlike the vector and scalar form factor cases, there is no experimental data that can help us
constructing FT (s) so that we must rely only on theory. We calculate the energy-dependence of the
tensor form factor FT (s) using again a phase dispersive representation as it is shown in refs. [2] and
[28];

FT (s)
FT (0)

= exp
[

s
π

∫ ∞

sπK

ds
′ δT (s

′

)

s′(s′ − s − iε)

]
, (22)

where F K̄0π−

T (0) = Λ2/F2 was calculated previously at leading order in the χPT framework (see eq.
(21)), and sπK = (mK̄0 +mπ−)

2. In this case it is clear, that lacking precise low-energy information,
we cannot increase the number of subtractions of FT (s). This, in turn, implies a sizable sensitivity
to the upper limit of the integral that is used numerically (scut ), which is illustrated in our figure 1,
where we consider the cases scut = M2

τ , 4, 9 GeV2 [28] 7. We take the differences between these

7In principle, one could try to reduce this sensitivity following the strategies employed in Ref. [66], but the procedure
will again be limited in this case by the absence of measurements sensitive to FT (s).

7
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Figure 1: Modulus and phase, |FT (s)| (left) and δT (s) = δ+(s) (right), of the tensor form factor, FT (s). On
the left plot, the dotted line corresponds to scut = 9 GeV2, the dashed one to scut = 4 GeV2, and the solid
one to scut = M2

τ .

curves as an estimate of our systematic theoretical error on FT (s)/FT (0). In the right panel of figure
1 we show the tensor form factor phase corresponding to δT (s) = δ+(s), with δ+(s) from the fits in
table 1 of Ref. [20]. In the inelastic region, our curve plotted for δT (s) lies within the error band
shown in figure 2 of Ref. [2] 8

5. Decay observables

In the rest frame of the τ lepton, the doubly differential decay width for the τ− → KSπ
−ντ

process is
d2Γ

dsdt
=

1
32(2π)3M3

τ

|M|2 , (23)

where |M|2 will be calculated in what follows, s is the invariant mass of the π−KS system taking
values in the (mK0 + mπ−)

2 ≤ s ≤ M2
τ interval, and

t±(s) =
1
2s

[
2s(M2

τ + m2
K0 − s) −

(
M2
τ − s

) (
s + m2

π− − m2
K0

)
±

(
M2
τ − s

) √
λ(s,m2

π−,m
2
K0)

]
, (24)

with λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz− 2yz being the usual Källen function and t = (Pτ − pπ)2.

5.1 Dalitz plots

By combining the equations of section 3, we obtain the following form for the amplitude (we
will omit from now on the indices identifying the KSπ

− charge channel)

M =
GF
√

2
Vus

√
SEW (1 + εL + εR)

[ (
(pK − pπ)µ +

∆πK

s
(pπ + pK )µ

)
LµF+(s)

+
∆Kπ

s

(
1 +

sε̂s
Mτ(ms − mu)

)
(pπ + pK )µLµF0(s)

+ 2iε̂T (p
µ
K pνπ − pµπpνK )LµνFT (s)

]
.

(25)

8Our phase is given in degrees while theirs is in radians.
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The previous equation can be written as follows:

M =
GF
√

2
Vus

√
SEW (1 + εL + εR)(M0 + M+ + MT ) , (26)

where,

M+ =
(
(pK − pπ)µ +

∆πK

s
(pπ + pK )µ

)
LµF+(s) ,

M0 =
∆Kπ

s

(
1 +

sε̂s
Mτ(ms − mu)

)
(pπ + pK )µLµF0(s) ,

MT = 2iε̂T (p
µ
K pνπ − pµπpνK )LµνFT (s) . (27)

The squared of the amplitude, computed from eq. (26), has six (all non-vanishing) contributions:
three of them coming from scalar-scalar (M00), vector-vector (M++), and tensor-tensor (MTT )

contributions, and the remaining three from interference terms (M0+, M0T , and M+T ). Their
expressions are

M0+ =
[
− 2M2

τRe[F+(s)F∗0 (s)]∆Kπ

(
1 +

sε̂s
Mτ(ms − mu)

)
×

(
s(M2

τ − s + ΣKπ − 2t) + M2
τ∆Kπ

)]
,

(28)

MT+ = −4ε̂T M3
τ sRe[FT (s)F∗+(s)]

(
1 −

s
M2
τ

)
λ(s,m2

π,m
2
K ) , (29)

MT0 =4∆Kπ ε̂T MτsRe[FT (s)F∗0 (s)]
(
1 +

sεs
Mτ(ms − mu)

)
×

[
s(M2

τ − s + ΣKπ − 2t) + M2
τ∆Kπ

]
,

(30)

M00 = (∆Kπ)
2M4

τ

(
1 −

s
M2
τ

)
|F0(s)|2

(
1 +

sε̂s
Mτ(ms − mu)

)2
, (31)

M++ =|F+(s)|2
[
M4
τ (s + ∆Kπ)

2 − M2
τ s

(
2∆Kπ(−m2

K + s + 2t − m2
π)

− ∆2
Kπ + s(s + 4t)

)
+ 4m2

K s2(m2
π − t) + 4s2t(s + t − m2

π)

]
,

(32)

MTT =4ε̂2
T F2

T s2
[
m4
π(M

2
τ − s) − 2m2

π(M
2
τ − s)(s + 2t − m2

K ) − m4
K (3M2

τ + s)

+ 2m2
K

(
(s + M2

τ )(s + 2t) − 2M4
τ

)
− s

(
(s + 2t)2 − M2

τ (s + 4t)
) ]
,

(33)

where we have introduced ΣKπ = m2
π + m2

K .
Taking into account all previous contributions we can finally write the unpolarized spin-

averaged squared amplitude as follows

|M|2 = G2
F |Vus |

2SEW (1 + εL + εR)2(M0+ + MT+ + MT0 + M00 + M++ + MTT ) . (34)

It is convenient in the study of the Dalitz plots to define the following observable introduced in Ref.
[28]

∆̃(ε̂S, ε̂T ) =

���|M(ε̂S, ε̂T )|2 − |M(0, 0)|2���
|M(0, 0)|2

, (35)

9
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0
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5.0 ×10-11

1.0 ×10-10

1.5 ×10-10

2.0 ×10-10

Figure 2: Dalitz plot distribution |M|200 in the SM, eq. (34): Differential decay distribution for τ− →
KSπ

−ντ in the (s, t) variables (left). The right-hand figure shows the differential decay distribution in the
(s, cosθ) variables, eq. (36). The Mandelstam variables, s and t, are normalized to M2

τ .

which is sensitive to the relative difference between the squared matrix element in presence/absence
of NP contributions (the SM case corresponds toM(0, 0)).

In the left panel of figure 2 we show the Dalitz plot for the SM case in the (s, t) variables, and
in the left part of figures 3 and 4 we show the corresponding plots for the values (ε̂S = −0.5, ε̂T = 0)
and (ε̂S = 0, ε̂T = 0.6), respectively. The election of these particular values of the ε̂S,T is discussed
in section 5.5.

The important thing to note from the SM result in figure 2 is that the dynamics is dominated
by the K∗(892) vector resonance.

The left panel of figures 3 and 4 shows the relative modification of the squared matrix element
for non-zero reasonable values of ε̂S and ε̂T in the (s, t) plane. Although large variations are seen in
a couple of regions close to the border of the Dalitz plot in figure 3 (left), these correspond to zones
with very suppressed probability, as can be seen in figure 2 (left). On the contrary, the regions with
larger probability have a small relative change, according to figure 3 (left). In figure 4 (left) the
region with the most noticeable change (though still smaller than those seen in figure 3) is located
very close to the s minimum of the Dalitz plot, which has very small probability density in figure 2
(left). This region quite overlaps with one of the two mentioned for the fig. 3 left plot. Because of
this feature, observing a deviation from the SM result in this region could be due to both tensor and
non-standard scalar interactions. On the contrary, a deviation in the region of small t values would
be signalling spin-zero NP contribution. In any case, changes are very small in the region most
densely populated by measured events in both left plots of figs. 3 and 4. Due to this, we conclude
that it will be extremely challenging to identify NP contributions in the (s, t) Dalitz plot even with
the large data samples accumulated by the end of operation of Belle-II [67].

5.2 Angular distribution

In this section we are going to study the angular dependence of the decay distribution. It is
convenient to work in the rest frame of the hadronic system, in which we have ®pπ+ ®pK = ®pτ− ®pν = ®0,

10
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0
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6

8

0

5

10

15

Figure 3: Dalitz plot distribution ∆̃(ε̂S, ε̂T ), eq. (35), in the τ− → KSπ
−ντ decays: left-hand side corresponds

to eq. (34) and the right-hand side corresponds to the differential decay distribution in the (s, cosθ) variables,
eq. (36), both with (ε̂S = −0.5, ε̂T = 0). The Mandelstam variables, s and t, are normalized to M2

τ .

0

0.25

0.50

0.75

1.00

1.25

0

0.5

1.0

1.5

Figure 4: Dalitz plot distribution ∆̃(ε̂S, ε̂T ), eq. (35), in the τ− → KSπ
−ντ decays: left-hand side corresponds

to eq. (34) and the right-hand side corresponds to the differential decay distribution in the (s, cosθ) variables,
eq. (36), both with (ε̂S = 0, ε̂T = 0.6). The Mandelstam variables, s and t, are normalized to M2

τ .

consequently the tau lepton and the pion energies are given by Eτ = (s + M2
τ )/(2

√
s) and Eπ =

(s + m2
π − m2

K )/(2
√

s).
We will study the decay distribution in terms of the (s, cosθ) variables, where θ is the angle between
the three-momenta of the pion and the three-momenta of the tau lepton, this angle is related to
the invariant t variable by t = M2

τ + m2
π − 2EτEπ + 2| ®pπ | | ®pτ |cosθ, where | ®pπ | =

√
E2
π − m2

π and
| ®pτ | =

√
E2
τ − M2

τ 9.
Changing variables to (s, cosθ) in eq. (23) we obtain the following:

9The tau lifetime and decay width (ττ and Γτ , respectively) are defined in the τ rest frame. Consequently, their values
are boosted in the reference frame considered in this subsection.
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d2Γ

d
√

sdcosθ
=

G2
F |Vus |

2SEW
128π3Mτ

(1 + εL + εR)2
(

M2
τ

s
− 1

)2

| ®pπ− |

{
∆

2
πK |F0(s)|2

×

(
1 +

sε̂S
Mτ(ms − mu)

)2
+ 16| ®pπ− |2s2

����−F+(s)
2Mτ

+ ε̂T FT (s)
����2

+ 4| ®pπ− |2s
(
1 −

s
M2
τ

)
cos2θ

[
|F+(s)|2 − 4sε̂2

T |FT (s)|
2] + 4∆πK | ®pπ− |

√
scosθ

×

(
1 +

sε̂S
Mτ(ms − mu)

) [
−Re

[
F0(s)F∗+(s)

]
+

2sε̂T
Mτ

Re
[
FT (s)F∗0 (s)

] ] }
. (36)

The Dalitz plots for the (s, cosθ) variables are shown on the right panels of figures 2, 3 and 4 (in
these last two the observable ∆̃(ε̂S, ε̂T ) is plotted). On figure 2 we plot the SM case, and in figures 3
and 4 we show Dalitz plots for the values (ε̂S = −0.5, ε̂T = 0) and (ε̂S = 0, ε̂T = 0.6), respectively.
The SM plot gives equivalent information in the (s, cosθ) variables as the one seen in the (s, t)
variables (right versus left plot of figure 2). Comparing both panels of figs. 3 one can see that
one of the enhanced regions in the (s, t) plot (the one at very low s values) is washed away in the
(s, cosθ) diagram, while the other is slightly further enhanced in a limited region (0 ≤ cosθ ≤ 0.5).
The comparison of the left and right plots of figure 4 shows that the enhanced area for large t values
is a bit more prominent in the (s, cosθ) distribution (for nearly maximal cosθ) although again it will
be very hard to disentangle these possible deviations from the SM patterns in near future data.
Assuming approximate lepton universality, using the bounds from Ref. [36] (obtained analyzing
Kaon (semi)leptonic decays) ε̂S ∼ −8 × 10−4, ε̂T ∼ 6 × 10−3 (maximum allowed absolute values
at one standard deviation) minimizes the deviations from the SM to unobservable level both in the
(s, t) and (s, cosθ) Dalitz plots.

5.3 Decay rate

Integrating eq. (23) upon the t variable we obtain the invariant mass distribution as follows

dΓ
ds
=

G2
F |Vus |

2M3
τ SEW

384π3s
(1 + εL + εR)2

(
1 −

s
M2
τ

)2
λ1/2(s,m2

π,m
2
K )

× [XV A + ε̂SXS + ε̂T XT + ε̂
2
SXS2 + ε̂2

T XT 2] ,

(37)
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where

XV A =
1

2s2

[
3|F0(s)|2∆2

Kπ + |F+(s)|
2
(
1 +

2s
M2
τ

)
λ(s,m2

π,m
2
K )

]
, (38a)

XS =
3

sMτ
|F0(s)|2

∆2
Kπ

ms − md
, (38b)

XT =
6

sMτ
Re[FT (s)F∗+(s)]λ(s,m

2
π,m

2
K ) , (38c)

XS2 =
3

2M2
τ

|F0(s)|2
∆2
Kπ

(ms − mu)
2 , (38d)

XT 2 =
4
s
|FT (s)|2

(
1 +

s
2M2

τ

)
λ(s,m2

π,m
2
K ) . (38e)

Note from the previous equations that the only possible source of CP violation coming from the
hadronic part is due to the Vector-Tensor interference, we will comment about this in section 6.

In figure 5, we plot the invariant mass distribution of the Kπ system for τ− → KSπ
−ντ decays

for the SM case and for (ε̂S = −0.5, ε̂T = 0) and (ε̂S = 0, ε̂T = 0.6) which would be realistic values
for these couplings, according to their impact on the decay width. Despite the logarithmic scale of
the plot, the deviations from the SM curve shown in figure 5 are too large when they are confronted
with the Belle measurements of this spectrum, as we will see in the fits of section 5.5. This will
allow us to set better bounds on ε̂S,T than those used in this subsection.

Figure 5: The K̄0π− hadronic invariant mass distribution for the SM (solid line) and ε̂S = −0.5, ε̂T = 0
(dashed line) and ε̂S = 0, ε̂T = 0.6 (dotted line). The decay distributions are normalized to the tau decay
width.
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5.4 Forward-backward asymmetry

Now we turn to the study of the forward-backward asymmetry, which is defined in the
following way

AKπ(s) =

∫ 1
0 dcosθ d2Γ

dsdcosθ −
∫ 0
−1 dcosθ d2Γ

dsdcosθ∫ 1
0 dcosθ d2Γ

dsdcosθ +
∫ 0
−1 dcosθ d2Γ

dsdcosθ

. (39)

We find the analytical expression for this observable substituting eq. (36) into eq. (39) and
integrating upon the cosθ variable with the following result 10

AKπ =
3
√
λ(s,m2

π,m2
K )

2s2[XV A + ε̂SXS + ε̂T XT + ε̂
2
S

XS2 + ε̂2
T XT 2]

(
1 +

sε̂S
Mτ(ms − mu)

)
∆πK

×

[
−Re[F0(s)F∗+(s)] +

2sε̂T
Mτ

Re[FT (s)F∗0 (s)]
]
.

(40)

Before studying the forward-backward asymmetry in the general case, it is important to study
its behaviour in the standard model case. If we set εR = εL = ε̂S = ε̂T = 0 we get the SM
forward-backward asymmetry, which is plotted in the solid line of figure 6.

The important thing to note from the SM result in figure 6 (solid line) is that the graph is peaked
around

√
s ∼ 0.6 GeV so that this is an important region to analyze and pay special attention. It

was already emphasized long ago that a measurement of the forward-backward asymmetry in this
decay channel would be crucial in improving our knowledge of both vector and scalar form factors
[68] 11.

For the more general case where we include NP interactions, we have figure 6 (dashed and
dotted lines), where we plot AKπ for the values (ε̂S = −0.5, ε̂T = 0) and (ε̂S = 0, ε̂T = 0.6) 12,
and we compare those plots with the SM case. There we can see that for quite large ε̂T values
some difference is appreciated for the tensor case; otherwise it may not be possible to disentangle
it from the standard contribution. Conversely, for non-standard scalar interactions the changes are
more noticeable since AKπ flips sign with respect to the SM. Note also that for scalar interactions
the value of AKπ gets smaller in magnitude as s increases. If it is possible to measure AKπ in a
low-energy bin, this would ease the identification of this type of NP in AKπ .

If we make the comparison with more realistic limits for the NP values [36] (under the
assumption of approximate lepton universality), it is impossible to identify any departures from
the SM prediction in this observable. For this reason, we make use of the following convenient
definition introduced in Ref. [28]

∆AKπ = AKπ(s, ε̂S, ε̂T ) − AKπ(s, 0, 0) . (41)

The corresponding (unmeasurably small) deviations from the SM result are plotted in figure 7.

10In eq. (40) we useAKπ to emphasize the decay channel under consideration to distinguish it to the other two-meson
decay modes. Otherwise we will also be using the most common notation AFB for this observable.

11We note that in this reference, and also later on in Refs. [22, 69], the angle θ used to compute AFB is defined
between the three-momenta of the tau lepton and the KS in the di-meson rest frame. Taking into account the different
sign conventions, it can be checked there is reasonable agreement with these works in the elastic region.

12Again, as we mentioned when we discussed the Dalitz plots, we will justify the use of these particular values in the
next section.
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Figure 6: Forward-backward asymmetry in τ− → KSπ
−ντ decays compared with the SM prediction (solid

line). The dashed line corresponds to ε̂S = −0.5, ε̂T = 0, and the dotted line corresponds to ε̂S = 0, ε̂T = 0.6.

Figure 7: Deviations from the SM forward-backward asymmetry, ∆AKπ , in τ− → KSπ
−ντ decays using

the bounds from Ref. [36]. The solid line corresponds to ε̂S = −8 × 10−4, ε̂T = 0 and the dashed line to
ε̂S = 0, ε̂T = 6 × 10−3.

5.5 Limits on ε̂S and ε̂T

Our purpose in this section is to set bounds on the effective couplings ε̂S and ε̂T . We achieve
this by comparing the total width Γ (which depends explicitly on the NP couplings ε̂S and ε̂T ) with
the SM width Γ0 (obtained by neglecting NP interactions which we get by setting ε̂S = ε̂T = 0).
This comparison is conveniently implemented with the introduction of the observable ∆ which we
define as follows

∆ ≡
Γ − Γ0

Γ0 = αε̂S + βε̂T + γε̂
2
S + δε̂

2
T , (42)

where we obtained the following results for the coefficients: α ∈ [0.30, 0.34], β ∈ [−2.92,−2.35],
γ ∈ [0.95, 1.13] and δ ∈ [3.57, 5.45].

With the help of the ∆ observable we obtain our limits for the ε̂S and ε̂T couplings in two
different ways. First, we set one of the couplings to zero and obtain bounds for the other, and
viceversa. This process gives us the two parabolas shown in figure 8.

The second way in which we set constraints is again using Eq. (42), but now taking the general
case where both couplings are non-vanishing. In this case we obtain the ellipse shown in figure 9.
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Figure 8: ∆ as a function of ε̂S for ε̂T = 0 (left hand) and of ε̂T for ε̂S = 0 (right hand) for τ− → KSπ
−ντ

decays. Horizontal lines represent the values of ∆ according to the current measurement and theory errors
(at three standard deviations) of the branching ratio (dashed line) and in the hypothetical case where the
measured branching ratio at Belle-II has a three times reduced uncertainty (dotted line).

Figure 9: Constraints on the scalar and tensor couplings obtained from ∆(τ− → KSπ
−ντ) using theory and

the measured value reported in the PDG, with their corresponding uncertainties at three standard deviations
(solid line). The dashed line ellipse corresponds to the case where the measurements error was reduced to a
third of the current uncertainty.

For the convenience of the reader we summarize our findings for the constraints in the following
table.

Next we will consider fits to the branching ratio and decay spectrum 13 of the τ− → KSπ
−ντ

decays as measured by Belle [16]. We will pay special attention to the possible explanation of
the conflicting data points (bins 5, 6 and 7) by the non-standard interactions. Therefore, we will

13We thank Denis Epifanov for providing us with these data.
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∆ limits ε̂S(ε̂T = 0) ε̂T (ε̂S = 0) ε̂S ε̂T

Current bounds [−0.57, 0.27] [−0.059, 0.052] ∪ [0.60, 0.72] [−0.89, 0.58] [−0.07, 0.72]
Future bounds [−0.52, 0.22] [−0.047, 0.036] ∪ [0.62, 0.71] [−0.87, 0.56] [−0.06, 0.71]

Table 1: Constraints on the scalar and tensor couplings obtained through the limits on the current branching
ratio at three standard deviations using the current theory and experimental errors and assuming the latter be
reduced to a third (’Future bounds’). This last case should be taken only as illustrative of the improvement
that can be achieved thanks to higher-statistics measurements, even in absence of any progress on the theory
side. It is clear that the knowledge of ε̂S,T using τ− → KSπ

−ντ decays data is limited by theory uncertainties.

consider fits with and without these data points. In all our fits, as explained e. g. in Ref. [55], we
will not consider the first data point (as it lies below the threshold for physical KS and π− masses)
and will disregard the data from the last 10 bins, as suggested by the Belle collaboration.
The χ2 function minimized in our fits is∑

i

(
Ni

exp − N th
i

σNi

)2

+

(
BRexp − BRth

σ
exp
BR

)2

, (43)

where the sum over the i bins may or may not include the i = 5, 6, 7 bins. We will consider the
measurement of BRexp reported in the Belle paper [16] (and not the PDG [9] or the HFLAV [70]
values), as discussed in Ref. [55]. Along our fits we float the meson form factors within their
estimated uncertainty bands and our quoted results take these errors into account. We present our
results in table 2.

Best fit values ε̂S ε̂T χ2 χ2 in the SM
Excluding i = 5, 6, 7 bins (1.3 ± 0.9) × 10−2 (0.7 ± 1.0) × 10−2 [72, 73] [74, 77]
Including i = 5, 6, 7 bins (0.9 ± 1.0) × 10−2 (1.7 ± 1.7) × 10−2 [83, 86] [91, 95]

Table 2: Best fit values to the Belle spectrum and branching ratio of the τ− → KSπ
−ντ decays [16]. The

cases where the i = 5, 6, 7 bins are excluded/included are considered. We display the reference results
obtained floating ε̂S and ε̂T simultaneously. In the last two columns the χ2 of these fits is compared to the
SM result.

6. CP violation

The observable ACP, measured by BaBar [6] has the right magnitude but the wrong sign
compared with the SM prediction (tiny corrections from direct CP violation are neglected along
this section). It is defined as

ACP =
Γ(τ+ → π+KS ν̄τ) − Γ(τ

− → π−KSντ)

Γ(τ+ → π+KS ν̄τ) + Γ(τ− → π−KSντ)
. (44)

In the SM, ACP is given by the neutral kaonmixing contribution. Thus, it comes from the analogous
asymmetry measured in semileptonic kaon decays [2] (` = e, µ)

Γ(KL → π−`+ν`) − Γ(KL → π+`−ν̄`)

Γ(KL → π−`+ν`) + Γ(KL → π+`−ν̄`)
= 3.32(6) × 10−3 , (45)
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up to small corrections caused by the fact that the KS is reconstructed at the B-factories through
its π+π− decay mode with a decay time of the order of the KS lifetime. This changes the previous
value to ASM

CP
= 3.6(1) × 10−3 [10], that is 2.8 σ away from the BaBar measurement, ACP =

−3.6(2.3)(1.1) × 10−3.
Ref. [3] shows that beyond the SM (BSM) interactions modify ACP to

ACP =
ASM
CP
+ ABSM

CP

1 + ASM
CP
× ABSM

CP

, (46)

where [2] 14

ABSM
CP =

2sinδWT |ε̂T |G
2
F |Vus |

2SEW
256π3M2

τΓ(τ → KSπντ)

∫ M2
τ

sπK

ds | f+(s)| |FT (s)|

sin (δ+(s) − δT (s))
λ3/2(s,m2

π,m
2
K )(M

2
τ − s)2

s2 , (47)

where δWT corresponds to the relativeweak phase between the SM (V-A) and the tensor contributions.
Ref. [2] uses SU(2)L invariance of the weak interactions within the EFT to find stringent constraints
on=m[ε̂T ], using the D− D̄ mixing measurements and the upper limit on the electric dipole moment
of the neutron. This yields the bound 2=m[ε̂T ] < 10−5, that we will use. To see that δWT is a small
parameter, we remind the limits from the global EFT analysis of NP in Kaon (semi)leptonic decays
[36], according to which |εT | = (0.5 ± 5.2) × 10−3. Considering this, sinδWT |ε̂T | ∼ =m[ε̂T ] and the
numerical evaluation of eq. (47) is straightforward with the inputs at hand.

We have computed eq. (47) using |FT (s)| obtained with scut = M2
τ , 4, 9 GeV2 (shown in the

left panel of fig. 1) and with δT (s) varying (smoothly) within the band shown in fig. 2 of Ref.
[2], as we agree with the estimation of this uncertainty 15. The errors on |F+(s)| and δ+(s) are
negligible compared to the uncertainties on FT (s). Among these two uncertainties, the error on
δT (s) dominates: changing scut for a given δT (s) can modify ABSM

CP
by a factor three, at most;

while, with a fixed scut , ABSM
CP

can be vanishing for δT (s) → δ+(s) also in the inelastic region. In
this way, we find

ABSM
CP < 8 · 10−7 , (48)

which is a slightly weaker bound than the one reported in Ref. [2]: ABSM
CP

< 3 · 10−7. This small
difference comes mainly from our accounting for the variation in scut and also for the slightly
different phase δ+(s) in both analyses. In any case, it is clear that heavy BSM interactions can only
modify ACP at the 10−6 level at most, which is at least three orders of magnitude smaller than the
theoretical uncertainty in its prediction (which is, in turn, some 25 times smaller than the error of
the BaBar measurement). Therefore, any conclusive anomaly in ACP must be explained outside
the framework considered in this paper (and in Ref. [2]); for instance, by BSM effects of very light
particles.

7. Conclusions

In this work we focused in the study of the τ− → (Kπ)−ντ decays. Here we have studied
the effect of NP in several interesting observables like Dalitz plots, decay spectrum and forward-

14We remind that cT in this reference equals 2ε̂T in our notation.
15See also Ref. [71], where NP bounds obtained from τ− → K−ντ decays are first discussed.
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backward asymmetry. The effect of this NP was encoded in the effective couplings ε̂S and ε̂T for
which we have also set constraints. All these observables were calculated in the SM case as well,
in order to be able to compare the way in which NP could manifest. Apart from that, we have three
main conclusions for this work:

• In agreement with Ref. [2], we confirm that it is not possible to understand within the low-
energy limit of the SMEFT framework the BaBar measurement [6] of the CP asymmetry,
which disagrees at 2.8σ with the SM prediction [10]. As a consequence of our dedicated
treatment of the uncertainties on the tensor form factor, we find an slightly weaker bound than
in Ref. [2], ABSM

CP
≤ 8 · 10−7, which is anyway some three (five) orders of magnitude smaller

than the theoretical uncertainty in its prediction (the error of the BaBar measurement). If the
BaBar anomaly is confirmed, its explanation must be due to light NP. A determination of this
quantity with Belle-I data, together with the future measurement at Belle-II [67], will shed
light on this puzzle.

• The bins number 5, 6 and 7 of the Belle measurement [16] of the KSπ
− mass spectrum

in τ− → KSπ
−ντ decays could not find an explanation using a scalar form factor obtained

from the corresponding partial-wave of a meson-meson scattering coupled channels analysis
[18, 57] 16. We have shown here, for the first time, that non-standard scalar or tensor
interactions produced by heavy NP are not capable of explaining these data points either.
Again a caveat remains with respect to light NP effects, which are beyond the scope of this
work.

• Current branching ratio and spectrum measurements of the τ− → KSπ
−ντ decays restrict the

NP effective couplings, ε̂S and ε̂T , as we have studied in this work for the first time. Our
results are consistent with naive expectations: while the considered decays set bounds similar
to those coming from hyperon semileptonic decays (which are at the level of a few TeV NP
energy scale under reasonable assumptions), they are not competitive with (semi)leptonic
Kaon decays, that could probe NP at a scale of order O(500) TeV for the case of scalar
interactions. However, we must say that tensor interactions in τ− → (Kπ)−ντ decays are
probed with similar NP energy reach than in (semi)leptonic Kaon and hyperon decays.
Therefore, the corresponding comparisons for ε̂T are meaningful tests of lepton universality
and under this assumption tau decays can complement Kaon and hyperon physics in restricting
tensor interactions.

Recently, several new works have addressed the same process that we have analyzed following
the LEFT, see for example refs. [72–74].
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