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1. Introduction

Effective Field Theories (EFTs) and QCD Lattice methods have become more and more
complementary and mutually supportive in the study of Hard Probes. Since the physical problem
is tremendously complex and should be addressed in the underlying field theory which is QCD,
the combination of EFTs and lattice has allowed us to make big progress in the last times. On
one hand, the EFT is pulling out scales from observables in a controlled way, separating them.
On the other hand, the low energy contributions that the EFT has factorized can be evaluated on
the lattice. This greatly reduces the complexity of the problem allowing the lattice to target the
nonperturbative part directly, appropriately defined in the EFT in terms of gauge invariant, purely
gluonic objects, a big simplification with respect to an ab initio lattice calculation of an observable.
This last is much more difficult because still contains all the physical scales of the problem. In
this framework also quenched lattice calculations can be pretty useful because at least at higher
energy the flavor dependence is accounted for by the EFT matching coefficients. In relation to hard
probes it has payed off to combine different EFTs, those who describe the hot medium properties
like Hard Thermal Loop (HTL) in real time or Electrostatic QCD (EQCD) and Magnetostatic QCD
(MQCD) in euclidean time and those describing processes in the medium like for example Soft
Collinear Effective Field Theory (SCET) for jets and nonrelativistic EFTs like Non Relativistic
QCD (NRQCD) or potential Nonrelativistic QCD (pNRQCD) for heavy quarks and quarkonium.
In particular, EFTs allow to resum infinite class of diagrams related to the existence of a physical
scale, to give a precise quantum field theoretical definition to objects of great phenomenological
interest like the potential or the transport coefficients, to factorize contributions of different scales,
to give a systematical framework for calculation of observables inside field theory. In this talk I
will focus on heavy probes and examples of what discussed above will include the free energies,
the heavy quark potential in medium, the heavy quark transport coefficients and the nonequilibrium
evolution of quarkonium in the fireball.

To boost the EFT and lattice interface we founded the TUMQCD lattice collaboration [1–4].
In this talk I will review results at the interface of EFT and lattice.

2. Heavy probes: Heavy Quarks and Quarkonium

Heavy quarks are produced at the beginning of the collision and remain up to the end. The
heavy-quarkmass< introduces a large scale, whose contributionmay be factorized and computed in
perturbation theory (< � Λ&�� , UB (<) � 1). Low-energy scales are sensitive to the temperature
) and even if nonperturbative they may be accessible via lattice calculations. Quarkonia are special
hard probes because being nonrelativistic bound states, they are multi-scale systems. They are
endowed with three energy scales, the scale of the quark mass < (hard scale), the scale of the
momentum transfer ? ∼ <E (soft) and the scale of the binding energy � ∼ <E2, being E the velocity
in the bound state and being<E proportional to the reverse of the size A of the system. If E is smaller
than 1 these scales are separated. In [5] it was summarized how to construct an effective field
theory called potential NonRelativistic QCD (pNRQCD) that allows to define the potentials both in
the case of a perturbative (weakly coupled pNRQCD) and of a nonperturbative soft scale (strongly
coupled pNRQCD): they are the matching coefficients of the EFT and they are well defined in the
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matching procedure. pNRQCD has the Schrödinger equation as zero problem and it is constructed
to be equivalent to QCD order by order in the expansion. In the case of strongly coupled pNRQCD
the potentials are given in terms of generalized Wilson loops to be calculated on the lattice. In
weakly coupled pNRQCD the degrees of freedom are color singlet and color octet quark-antiquark
pair (together with US gluons), in strongly coupled pNRQCD we have only color singlets.

2.1 pNRQCD at finite T

Considering quarkonium in the hot QCD medium also the thermal scales of the Quark Gluon
Plasma (QGP) are emerging: the temperature ) , the Debye mass <� ∼ 6) related to the (chromo)
electric screening and the scale 62) related to the (chromo)magnetic screening. In a weakly coupled
plasma the scales are separated and hierarchically ordered. In a series of papers [6–11] a pNRQCD
at finite ) description has been constructed.

2.2 The Potential

pNRQCD at finite ) allows us to give a clear and systematic definition of what is the quarko-
nium potential in medium. This has been investigated for years using many phenomenological
assumptions, spanning from the internal energy to the free energy, either the average free energy
or the singlet one which is gauge dependent. The EFT gives us for the first time the possibility
to define what is this potential: it is the matching coefficient of the EFT that results from the
integration of all the scales above the scale of the binding energy and it is the object that has to be
inserted in the Schrödinger equation, the zero order equation in pNRQCD describing the real time
evolution of the&&̄ pair in medium. When ) is bigger than the energy, the potential depends on the
temperature, otherwise not. Thermal effects appear in any case in the nonpotential contributions to
the energy levels. We assumed that the bound state exist for ) � < and 1/A ≥ <� , we worked
in the weak coupling limit and we consider all possible scales hierarchies [7]. We found that the
thermal part of the potential has a real part (roughly described by the free energy) and an imaginary
part. The imaginary part comes from two effects: the Landau damping [7, 11, 12], an effect existing
also in QED, and the singlet to octet transition, existing only in QCD [7]. Which one dominates
depends on the ratio between <� and � . In the EFT one could show that the imaginary part of the
potential related to the Landau damping comes from inelastic parton scattering [9] and the singlet
to octet transitition from gluon dissociation [10]. The existence of the imaginary part changed our
paradigm for quarkonium suppression as the state dissociates for this reason well before that the
conventional screening becomes active [7, 11, 12]. These large ) dependent imaginary parts call
for an appropriate framework to describe the nonequilibrium evolution of quarkonium in medium:
the open quantum system framework as we will discuss in Sec.4.

The pattern of thermal corrections is pretty interesting [7]: when ) < � thermal corrections
are only in the energy; for) > 1/A, 1/A > <� or 1/A > ) > � there is no exponential screening and
) dependent power like corrections appear; if ) > 1/A, 1/A ∼ <� we have exponential screening
but the imaginary part of the static potential is already bigger than the real one and dissociation
already happened. Once the potential has been calculated, the EFT gives the systematic framework
to obtain the thermal energies: in [6] it was performed the first QCD calculation of the thermal
contributions to theΥ(1() mass and width at order<U5

B at LHC below the dissociation temperature
of about 500 MeV. This calculation is very important because it gives the parametric ) dependence
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of this observables. The width goes linear in ) in the dominant term and this has been confirmed
by lattice calculations of the spectrum [18]. These findings in the EFT in perturbation theory
have inspired many subsequent nonperturbative calculations of the static potential at finite ) . In
particular the Wilson loop at finite ) has been calculated on the lattice [23, 24] finding hints of
a large imaginary parts. These calculations are pretty challenging and refining of the extraction
methods are currently in elaboration [25, 27].

3. Free Energies and Polyakov Loops

Free energies and Polyakov loop calculations have been always very prominent in QCD at finite
), see e.g. the reviews [26, 29] Here, I report some recent developments at the interface of EFTs
and lattice. We calculated the Polyakov loop and the Polyakov loop correlators both in perturbation
theory and using EFTs to resum scales contributions in [30–33] and on the lattice to obtain these
quantities fully nonperturbatively in [2, 3]. In particular: the Polyakov loop has been computed up
to order 66, the (subtracted)&&̄ free energy has been computed at short distances up to corrections
of order 67(A))4, 68, the (subtracted) &&̄ free energy has been computed at screening distances
up to corrections of order 68; the singlet free energy has been computed at short distances up to
corrections of order 64(A))5, 66; the singlet free energy has been computed at screening distances
up to corrections of order 65 [30, 31, 33].

From the lattice simulations and from comparison to the perturbative results we could obtain
the following important outcomes [2, 3]: lattice calculations are consistent with weak-coupling
expectations in the regime of application of the weakly coupled resummed perturbation theory
which confirms the predictive power of the EFT; the crossover temperature to the quark-gluon
plasma is 153 + 6.5 − 5 MeV as extracted from the entropy of the Polyakov loop; the screening sets
in at A) ∼ 0.3 − 0.4 (observable dependent), consistent with a screening length of about 1/<�;
asymptotic screening masses are about 2<� (observable dependent); the first determination of the
color octet &&̄ free energy has been obtained [3] further investigated with a different setup in [28].

In the EFT/pNRQCD framework the Polyakov loop correlator %2 can be decomposed as

%2 (A, )) =
1
#2
2

[4− 5B (A ,) ,<�)/) + (#2
2 − 1)4− 5> (A ,) ,<�)/) + O(U3

B (A))4)]

with 5B = &&̄-color singlet free energy, 5> = &&̄-color octet free energy to be matched from the
singlet and octet pNRQCD propagators

〈((r, 0, 1/))(†(r, 0, 0)〉
N = 4−+B (A )/) (1 + XB) ≡ 4− 5B (A ,) ,<�)/)

and

〈$0 (r, 0, 1/))$0 †(r, 0, 0)〉
N = 4−+> (A )/) [(#2

2 − 1)〈%�〉 + X>] ≡ (#2
2 − 1)4− 5> (A ,) ,<�)/)

where +B and +$ are the singlet and octet static potentials, XB and X> stand for thermal loop
corrections to the singlet/octet propagators, N is a normalization and 〈%�〉 is the average value of
an adjoint Wilson line.
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Wemay identify two possible regimes: low temperatures, ) � +B (or A) � UB),: %2 ≈ 4−+B/)

# 2
2

;
high temperatures, ) � +B (or A) � UB): %2 is a linear combination of 4− 5B/) and 4− 5>/) . A strict
perturbative expansion in UB corresponds to this regime. These regimes have been validated with
the lattice calculations [3].

The free energies turn out not to be the objects to be used as a potential in the Schrödinger
equation even if the singlet free energy may provide a good approximation of the real part of the
static potential.

Differently from the Polyakov loop and the Polyakov loop correlator, the cyclic Wilson loop is
divergent after charge and field renormalization. This divergence is due to intersection points [32].
In [32] it has been shown that this produces that the cyclicWilson loop mixes under renormalization
with the correlator of two Polyakov loops.The resulting renormalization equation has been tested
up to order 66 and used to resum the leading logarithms associated with the intersection divergence.
The cyclic Wilson loop free energy has been computed at short distances up to corrections of order
65 + !! resummation and a renormalization prescription relevant for lattice evaluation has been
given [32].

4. The quarkonium nonequilibrium evolution in medium: EFTs, Open Quantum
Systems (OQS) and lattice

The large imaginary parts appearing in the static potential motivated us to introducing an
appropriate framework to describe the real time nonequilibrium evolution of quarkonium in the
QGP medium. In [14–16] we have developed an open quantum system (OQS) framework (for OQS
see [35] for a review and the seminal paper [36]) rooted in pNRQCD at finite) that is fully quantum,
conserves the number of heavy quarks and consider both color singlet and color octet quarkonium
degrees of freedom. This has also been reported by the talk of Miguel Escobedo at this conference
[34].

We distinguish the environment (QGP) characterized by the scale ) and the system (quarko-
nium) characterized by the scale � . We identify the inverse of E with the intrinsic time scale of the
system: g( ∼ 1/� and the inverse of c) with the correlation time of the environment: g� ∼ 1/(c)).
If the medium is in thermal equilibrium, or locally in thermal equilibrium, we may understand ) as
a temperature, otherwise is just a parameter. The medium can be strongly coupled. The evolution
of the system is characterized by a relaxation time g' that is estimated by the inverse of the color
singlet self-energy diagram in pNRQCD at finite ) . We select quarkonia states with a small radius
(Coulombic) for which 1/A � c),Λ&�� and we consider c) � � .

In this framework ,in [14], a set of master equations governing the time evolution of heavy
quarkonium in a medium were derived. The equations follow from assuming the inverse Bohr
radius of the quarkonium to be greater than the energy scale of the medium, and model the
quarkonium as evolving in the vacuum up to a time C = C0 at which point interactions with the
medium begin. The equations express the time evolution of the density matrices of the heavy quark-
antiquark color singlet, dB, and octet states, d>, in terms of the color singlet and octet Hamiltonians,
ℎB = p2/"−��UB/A + ... and ℎ> = p2/" +UB/(2#2A) + ..., and interaction terms with the medium,
which, at order A2 in the multipole expansion, are encoded in the self-energy diagrams of the EFTs.
These interactions account for the mass shift of the heavy&&̄ pair induced by the medium, its decay
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width induced by the medium, the generation of &&̄ color singlet states from &&̄ color octet states
interacting with the medium and the generation of &&̄ color octet states from &&̄ (color singlet
or octet) states interacting with the medium. The leading order interaction between a heavy &&̄
field and the medium is encoded in pNRQCD in a chromoelectric dipole interaction, which appears
at order A/<0 in the EFT Lagrangian. The approach gives us master equations, in general non
Markovian, for the out of equilibrium evolution of the color singlet and color octet matrix densities.
The system is in non-equilibrium because through interaction with the environment (quark gluon
plasma) singlet and octet quark-antiquark states continuously transform in each other although the
total number of heavy quarks is conserved.

Assuming that any energy scale in the medium is larger than the heavy &&̄ binding energy � ,
in particular that g' � g� , we obtain a Markovian evolution while the chosen hierarchy of scales
implies gB � g� qualifying the regime as quantum Brownian motion. In this situation we can
reduce the general master equation to a Linblad form:

dd
dC
= −8[�, d] +

∑
=

(
�=d�

†
= −

1
2

{
�†=�=, d

})
, (1)

where � is a Hermitian operator, and �= are known as collapse operators. These operators were
computed in [14, 15]. If we assume an isotropic medium and the quarkonium at rest with respect
to the medium, in the large time limit the equation 1 assumes a particular simple form:

d =

(
dB 0
0 d>

)
(2)

� =

(
ℎB 0
0 ℎ>

)
+ A

2

2
W(C)

(
1 0
0 7

16

)
, (3)

�0
8 =

√
^(C)

8
A 8

(
0 1√
8 0

)
, �1

8 =

√
5^(C)

16
A 8

(
0 0
0 1

)
(4)

Interestingly enough in this case the properties of the QGP are encoded in two transport
coefficients: the heavy quark momentum diffusion coefficient, ^, and its dispersive counterpart W
which are given by time integrals of appropriate gauge invariant correlators at finite ) given by the
integral of gauge invariant correlators of chromoelectric fields:

^ =
62

6#2

∫ ∞

0
dB

〈 {
�0,8 (B, 0), �0,8 (0, 0)

} 〉
, (5)

W = −8 6
2

6#2

∫ ∞

0
dB

〈 [
�0,8 (B, 0), �0,8 (0, 0)

] 〉
. (6)

In the case of a nonperturbative QGP, these objects are nonperturbative and should be evaluated
on the lattice. Once the Linblad equation is solved and evolved up to freeze out one could obtain
observables like the '�� and the E2 by projecting over the quarkonium states of interest and compare
to the experimental data at LHC, see [14, 15].

Notice that in this case the OQS/pNRQCD framework allows us to use input from a lattice QCD
in equilibrium calculation to describe the nonequilibrium evolution of quarkonium in medium. I n
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[37] using the static limit the evolution equations have been obtained for quarkonia of any radius.
In [42] we are devoloping a new computational approach to solve the Linblad equations in a more
efficient way that allows to couple the quarkonium system to the full hydrodynamical evolution.

The semiclassical limit of similar equations have been studied in [17] and the relevance of
correlated versus noncorrelated noise in [43]. In [38, 39] using this same pNRQCD and OQS
framework and a particular scales hierarchy, transport equations have been obtained for the study
of quarkonium in medium, in particular a semiclassical Boltzmann equation has been obtained
and in the case of the differential reaction rate, the information on the QGP is contained in a
novel chromoelectric gluon correlator involving also staple-shapedWilson lines, in a way similar to
what happens at ) = 0 in the gluon parton distribution functions, the gluon transverse momentum
dependent parton distribution functions and in the quarkoniumproduction cross section factorization
in pNRQCD [40].

5. Transport Coefficients ^ and W

The heavy quark momentum diffusion coefficient, ^, is an object of special interest in the
literature, but one which has proven notoriously difficult to estimate, despite the fact that it has been
computed by weak-coupling methods at next-to-leading order accuracy, and by lattice simulations
of the pure SU(3) gauge theory. Another coefficient, W, has been recently identified in the OQS
description of quarkonium nonequilibrium evolution. It can be understood as the dispersive counter-
part of ^. Nothing is known about W, apart from its leading order, weak-coupling expression [7, 45].
Both ^ and W are, however, of foremost importance in heavy quarkonium physics as they entirely
determine the in and out of equilibrium dynamics of quarkonium in a medium, if the evolution of
the density matrix is Markovian, and the motion, quantum Brownian. The EFT allows to relate
such coefficients to quarkonium thermal energy shifts and widths. Precisely [16], using quarkonia
with a small radius (Coulombic) to probe the strongly coupled QGP, we get the relations

Γ = 3 < A >2 ^, (7)

X" =
3
2
< A >2 W, (8)

where Γ and X" are the thermal width and mass shift and < A > is the average radius of the given
quarkonium state. Then, using 2+1 flavors lattice calculations of Γ and X" [18, 19] we could obtain
the unquenched values for ^ and W shown in Figs. 1 and 2. In Fig.1, the first entry (black bar) shows
^/)3 as obtained from Eq. (7) using the lattice data of Refs. [18, 19] for the lower and upper bounds
of the thermal decaywidth of theΥ(1(). The second entry (brown bar) reports the (quenched) lattice
estimate of Ref. [20]. The third and fourth entries (green bars) are the determinations based on
the ALICE [21] and STAR [22] measurements of the �-meson azimuthal anisotropy coefficient E2,
respectively. The fifth entry (blue bar) is the leading order (LO) perturbative result with the strong
coupling computed at the scale c × (407 MeV) = 1.28 GeV. We assign to it a 50% uncertainty.

In Fig. 2 the first three entries (black bars) show W/)3 as obtained from Eq. ((8)) using
lattice data of Ref. [19] for the thermal mass shift of the �/k and of the Υ(1() at two different
temperatures. The error bars account for the lattice uncertainties only. The last two entries (blue
bars) provide W/)3 in perturbation theory at leading order at two different temperatures. We assign
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Figure 1: Extraction of ^/)3, see the text
for details.

Figure 2: Extractions of W/)3, for details
see the text.

a 50% uncertainty to these results. The gray band gives our final range. The resulting range for ^ is
consistent with the earlier determinations, the one for W is the first non-perturbative determination
of this quantity.

This is a clear example of how one could obtain results beyond the present state of the art (in
this case an unquenched lattice calculation of ^ and W) taking advantage of the alliace between
EFT and lattice.

5.1 Direct lattice calculation of ^

In [4]we computed the heavy quarkmomentumdiffusion coefficient directly from the correlator
of two chromo-electric fields attached to a Polyakov loop in pure SU(3) gauge theory.

Notice that in general the lattice calculations of the transport coefficients are very difficult.
In fact, to obtain the transport coefficients one has to reconstruct the spectral functions from the
appropriate Euclidean time correlation functions. At low energies, l, the spectral function has a
peak, called the transport peak, and the width of the transport peak defines the transport coefficient.
Thus, one needs a reliable determination of the width of the transport peak in order to obtain the
transport coefficient from lattice QCD calculations, which is difficult. In the case of heavy quarks,
this is even more challenging because the width of the transport peak is inversely proportional to the
heavy quark mass. Moreover, Euclidean time correlators are rather insensitive to small widths. The
above difficulty in the determination of the heavy quark diffusion coefficient can be circumvented
by using EFTs. Namely, by integrating out the heavy quark fields one can relate the heavy quark
diffusion coefficient to the correlator of the chromoelectric field strength, as we have previously
discussed. The corresponding spectral function does not have a transport peak and the small
l behavior is smoothly connected to the UV behavior of the spectral function The heavy quark
diffusion coefficient is given by the intercept of the spectral function at l = 0 and no determination
of the width of the transport peak is needed.. Recently the subleading correction (in the mass
expansion) to ^ has been calculated and found to be proportional to a correlator of magnetic fields
[44].

Using a multilevel algorithm and tree-level improvement, we studied the behavior of the
diffusion coefficient as a function of temperature in an unprecedented wide range of temperature
1.1 < )/)2 < 104. At high T is possible to compare with the perturbative expansions in the EFT
and we find that within errors the lattice results are remarkably compatible with the next-to-leading
order perturbative result, as you see from Fig. 3.
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These results expose for the first time the temperature dependence of ^ in a large of window of
temperature and have a great impact on '�� and E2 predictions and it has been shown solving the
Linblad equations of [14, 15] with a ) dependent ^, cf. [42].

100 101 102 103 104

T/Tc

0

1

2

3

4

5

κ
/T

3

fit

NLO

Our result

Figure 3: Temperature dependence of our results compared to the NLO result. The shaded bands include
the errors coming from varying the scale by a factor 2. The blue band also includes the statistical error.

This correlator has been recently computed quenched on the lattice at ) = 1.5)2 using the
gradient flow in [41].

6. Outlook

We focused on heavy quarks but there are other hard probes to which the EFT/lattice approach
can be applied. A clear example is the calculation of @̂ that controls jet quenching. A systematic
treatment of a complex phenomenon like jet quenching is possible in an EFT framework owing to
the hierarchy of scales that characterizes the system. These are typically SCET scales &,&_,&_2

with _ = )/& which characterize the propagation of a very energetic parton in the medium and
the thermal scales that characterize the medium itself. @̂ is the jet quenching parameter, i.e. the
mean square transverse momentum picked up by the hard parton per unit distance traveled. Using
EFT methods @̂ can be expressed in terms of gauge invariant gauge field correlators to be calculated
on the lattice, see [46, 47]. Recently an open quantum system description of jet quenching rooted
in the EFT/lattice has been developed [48] in analogy to what I have described above for the
nonequilibrium evolution of quarkonium in medium.

In summary, the alliance of EFTs, resummed perturbative and lattice methods allows to study
hard probes directly in the realm of QCD in a systematic way. In this framework hard probes
become a unique laboratory for the study of the QGP. Some previous disagreements between
perturbation theory and lattice appear to be solved. The EFT factorization at lower energy increase
our predictivity power: nonperturbative objects depends only on the lower energy scale, are reduced
in number and formulated such that they can be evaluated on the lattice directly. EFTs allowus to give
the appropriate definition and define a calculational scheme for quantities of huge phenomenological
interest. EFTs allow us to enlarge the applicability region of lattice see e.g. the non equilibrium
evolution of quarkonium in the fireball. I have reported results on the free energies, the potential,
the thermal spectrum, the '��, some diffusion coefficient but more can be studied in the same
framework. Many of the correlators factored in the EFT have still to be computed on the lattice.
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Calculating these objects on the lattice and developing tools to calculate them also unquenched,
like the gradient flow, as well as efficient techniques to relate to continuum will have a profound
impact on the phenomenology of hard probes. Many EFTs applications have still to be worked out
and new field entered like nonequilibrium studies with open quantum systems.
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