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Importance of Multiplicity Fluctuations in Entropy Scaling
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One of the greatest uncertainties in heavy-ion collisions is the description of the initial state.
Different models predict a wide range of initial energy density distributions based on their un-
derlying assumptions. Final flow harmonics are sensitive to these differences in the initial state
due to the nearly linear mapping between eccentricities and anisotropic flow harmonics. The
Trento code uses a model-agnostic approach by phenomenologically parameterizing the initial
state and constraining those parameters from a Bayesian analysis. There the multiplicity fluctu-
ations were determined by a one parameter Γ distribution. However, initial-state models arising
from the Color-Glass Condensate (CGC) framework lead to an initial energy density which is
outside the functional form considered in Trento and its later Bayesian analyses because they rely
on log-normal multiplicity fluctuations. We compare )�)� scaling (CGC-like) to

√
)�)� scaling

(preferred from a Trento Bayesian analysis) and find that the )�)� form together with log-normal
fluctuations is a reasonable candidate to describe the multiplicity fluctuations but leads to larger
eccentricities, which would affect the extraction of viscosity in small systems.
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1. Introduction

Understanding the initial state of heavy-ion collisions requires real-time non-perturbative cal-
culations in Quantum Chromodynamics that cannot be done on the lattice. The initial condition
affects the final state, which affects the extraction of viscosities from comparisons to experimen-
tal measurements of flow harmonics E=. The initial state can be quantified using eccentricities
Y= = |〈48=q〉|, which are strongly correlated with E= [1, 2]. The extraction of viscosity is directly
correlated with the model’s Y= [3]. Thus, the correct description of the initial state is crucial to
extract properties of the Quark Gluon Plasma. Recently a Bayesian analysis used a phenomenolog-
ically based initial state, TRENTO, and demonstrated a preference for the initial entropy density
B ∝
√
)�)� where )�, )� are the nuclear thickness functions [4]. The Bayesian analysis assumed

a Γ functional form for the event-by-event multiplicity fluctuations [4]. This choice restricts the
range of models considered, excluding potentially viable models such as a Color-Glass Condensate
(CGC) description of the initial state [5–8]. In Ref. [5] the authors investigated a CGC-like linear
scaling of the initial energy density n ∝ )�)� and considered a log-normal distribution for the
functional form of the multiplicity fluctuations. Here, we systematically study the impact of these
two initial-state models and choices of multiplicity fluctuations on the initial-state eccentricities.

2. Methods

The initial state inTrento is characterized by thickness functions of the form)�,� = l�,�
∫
3I d

where d is the number density of individual nucleons andl is a multiplicity weight which fluctuates
event by event. The weights l are sampled from a distribution whose mean in 1 but allow for high-
multiplicity fluctuations within a given nucleon. In Trento, that distribution is chosen to be a
one-parameter Γ distribution of the form

%: (l) =
: :

Γ(:)l
:−14−:l , (1)

with the parameter : controlling the shape of the distribution [4]. In the limit : → ∞, the
distribution Eq. (1) approaches a delta function X(l); it becomes wider as : → 1; and blows up at
0 when : < 1. Given this assumed functional form, the Bayesian analysis found that the initial-state
model B ∝

√
)�)� was preferred. Other models [5], using instead a log-normal distribution

%: (l) =
2

l:
√

2c
4
− ln2 (l2 )

2:2 , (2)

in conjunction with the linear scaling n ∝ )�)� can also describe the data. The log-normal
distribution Eq. (2) becomes a delta function X(l) in the limit : → 0, while large values : ∼ O(1)
correspond to a wider distribution.

To systematically study the effects of these different choices, we have added both linear scaling
and the log-normal distribution to Trento. The effect of these choices can be seen in the multiplicity
distributions shown in Fig. 1, where : , for each distribution and functional form, is tuned to best
reproduce STAR data for dAu at 200 GeV. Below #2ℎ/〈#2ℎ〉 = 4, there is good agreement with the
data in all four cases. The high-multiplicity tail of the distribution is where the curves start to depart
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Figure 1: Multiplicity Distribution of dAu for functional forms
√
)�)� and )�)� using best fits for Γ and

lognormal multiplicity fluctuation distributions.

from the data, with
√
)�)� and log-normal fluctuations overpredicting the data by a significant

amount. Γ multiplicity fluctuations work well with Trento’s
√
)�)� and log normal fluctuations

do not. Across both fluctuation distributions, )�)� favors a narrow distribution providing few
fluctuations while

√
)�)� prefers a wider distribution leading to a lot of fluctuations, suggesting

linear scaling is able to match data by mean field while
√
)�)� requires many fluctuations to reach

the same result.

3. Results

The effect of these choices in functional form and multiplicity fluctuations can be seen in
the plots of Y2{2} (left), that describes the ellipticity of the initial state, and Y3{2} (right), which
characterizes the triangular geometry, shown in Fig. (2). Despite agreement in multiplicity

Figure 2: Two particle eccentricities of dAu for functional forms
√
)�)� and )�)� using best fits for Γ and

lognormal multiplicity fluctuation distributions.

distribution below #2ℎ/〈#2ℎ〉 = 4, the eccentricities differ significantly. Linear scaling leads
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to larger eccentricities than
√
)�)�, except for a dip in Y3{2} in central events. This could be

a mean field effect,
√
)�)� spreads out the energy more than )�)� and slightly washes out the

geometry. The difference in choice of multiplicity fluctuations is negligible except for
√
)�)� at

low centralities, where the Γ fluctuations trend downward or level off while the log normal trend
upward. The effect of the differences in the eccentricities of the two functional forms will be seen
in the extraction of shear viscosity with )�)� needing a larger viscosity.

4. Conclusion

Trento’s preferred functional form )' =
√
)�)� works best with a Γ multiplicity fluctuation

distribution, suggesting the choice of functional form is correlated with the multiplicity fluctuation
distribution. The linear functional form )' ∝ )�)�, which is outside the scope considered in the
Trento Bayesian analysis, is also able to reproduce the experimental dAu multiplicity distributions
with fewer multiplicity fluctuations. This may suggest that the parameter space considered in
Trento’s Bayesian was overly restrictive, excluding some viable models in small systems. Between
the two models, there is a noticeable difference in the magnitude of the eccentricities Y2{2}, Y3{2},
although the trends are qualitatively similar. The difference in eccentricities suggests that there is
systematic uncertainty in the Trento Bayesian extraction of QGP viscosities in small systems, which
could be controlled by increasing the functional space of the Bayesian analysis.

Acknowledgements

The authors acknowledge support from theUS-DOENuclear ScienceGrantNo. DE-SC0019175,
the Alfred P. Sloan Foundation, and the Illinois Campus Cluster, a computing resource that is op-
erated by the Illinois Campus Cluster Program (ICCP) in conjunction with the National Center for
Supercomputing Applications (NCSA), and which is supported by funds from the University of
Illinois at Urbana-Champaign.

References

[1] F. G. Gardim, F. Grassi, M. Luzum and J.-Y. OllitraultPhys. Rev. C 85 (2012) 024908.

[2] F. G. Gardim, J. Noronha-Hostler, M. Luzum and F. GrassiPhys. Rev. C 91 (2015) 034902.

[3] M. Luzum and P. RomatschkePhys. Rev. Lett. 103 (2009) 262302.

[4] J. S. Moreland, J. E. Bernhard and S. A. BassPhys. Rev. C 101 (2020) 024911.

[5] J. Nagle and W. ZajcPhys. Rev. C 99 (2019) 054908.

[6] T. LappiPhys. Lett. B 643 (2006) 11–16.

[7] G. Chen, R. J. Fries, J. I. Kapusta and Y. LiPhys. Rev. C 92 (2015) 064912.

[8] P. Romatschke and U. Romatschke. Cambridge Monographs on Mathematical Physics.
Cambridge University Press, 5, 2019, 10.1017/9781108651998.

4

http://dx.doi.org/10.1103/PhysRevC.85.024908
http://dx.doi.org/10.1103/PhysRevC.91.034902
http://dx.doi.org/10.1103/PhysRevLett.103.262302
http://dx.doi.org/10.1103/PhysRevC.101.024911
http://dx.doi.org/10.1103/PhysRevC.99.054908
http://dx.doi.org/10.1016/j.physletb.2006.10.017
http://dx.doi.org/10.1103/PhysRevC.92.064912
http://dx.doi.org/10.1017/9781108651998

	Introduction
	Methods
	Results
	Conclusion

