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Full solution of the medium-induced radiation spectrum
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Newmeasurements of jet quenching observables at RHIC and at the LHC, such as jet substructure
observables, demand an increased precision in the theory calculations describing medium-induced
radiation of gluons. Closed expressions for the gluon spectrum including a full resummation of
multiple scatterings have been known for the past 20 years. Still they have only been evaluated
in specific limits either taking a few terms in an opacity expansion or by employing a Gaussian
approximation for the interaction potential – which misses essential physical effects. We present
here a new flexible method to compute the full spectrum for a realistic interaction potential, thus
allowing us for the first time to properly quantify the effect of the all-order resummation of multiple
scatterings. This new approach paves the way for precision phenomenological studies including
multiple scattering effects such as coherence phenomena.
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1. Introduction and derivation

New measurements of hard probes observables in high-energy heavy-ion collisions, together
with recent studies suggesting that jet quenching observables may provide insight into the different
stages of the evolution of the system created after the collision [1, 2], make imperative to revisit and
relax approximations under which the in-medium radiation spectrum is computed. The medium-
induced soft gluon spectrum off a high-energy parton in the BDMPS-Z framework reads:

ω
dI

dωd2k
=

2αsCR

(2π)2ω2 Re
∫ ∞

0
dt ′

∫ t′

0
dt

∫
pq

p · q K̃(t ′, q; t, p)P(∞, k; t ′, q) , (1)

where k and ω are, respectively, the two-dimensional transverse momentum and energy of the
emitted gluon1. Since the numerical evaluation of the kernel K̃(t ′, q; t, p), including all the multiple
scatterings for a realistic collision rate V(q) – such as a Yukawa interaction – is challenging, the
spectrum in Eq. (1) has been historically computedwithin two approximations in which an analytical
expression for the kernel is possible: multiple soft and single hard momentum transfer. The former,
also known as the harmonic oscillator (HO) approximation, assumes a Gaussian profile for the
transverse momentum transfer. The latter is obtained by expanding the integrand of the kernel in
powers of the density of scattering centers (opacity expansion). The first order (N = 1) in this
procedure is usually referred to as the Gyulassy-Levai-Vitev (GLV) approximation.

Following the direction of [4], we present here a method that allows us to compute the full
spectrum, including the resummation of all multiple scatterings, for realistic interactions without
the need of using the above mentioned approximations. We start by writing the spectrum as

ω
dI

dωd2k
=

2αsCR

(2π)2ω
Re

∫ L

0
ds n(s)

∫ s

0
dt

∫
pql

ip ·
(
l

l2
−

q

q2

)
σ(l − q)K̃(s, q; t, p)P(L, k; s, l) ,

(2)
which is equivalent to Eq. (1) once the vacuum contribution has been subtracted (this is shown in
Appendix A of ref.[3]). The broadening satisfies

∂τP(τ, k; s, l) = −
1
2

n(τ)
∫
k′
σ(k − k ′)P(τ, k ′; s, l) , (3)

with initial condition P(s, k; s, l) = (2π)2δ(2)(k − l) and the kernel satisfies

∂tK̃(s, q; t, p) =
ip2

2ω
K̃(s, q; t, p) +

1
2

n(t)
∫
k′
σ(k ′ − p)K̃(s, q; t, k ′) , (4)

with initial condition K̃(s, q; s, p) = (2π)2δ(2)(q − p); where σ is the dipole cross section which
can be written, in momentum space, in terms of the collision rate V as

σ(q) = −V(q) + (2π)2δ2(q)

∫
l
V(l) . (5)

Instead of trying to solve the previous differential equations, we define

φ(τ, k; s, q) = n(s)
∫
l

(
l

l2
−

q

q2

)
σ(l − q)P(τ, k; s, l) , (6)

1For further details about Eq. (1) and the explicit expressions of the kernel K̃(t ′, q; t, p) and themomentum broadening
factor P(∞, k; t ′, q) we refer the reader to [3].
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which satisifies
∂τφ(τ, k; s, q) = −

1
2

n(τ)
∫
k′
σ(k − k ′)φ(τ, k ′; s, q) , (7)

with initial condition
φ(s, k; s, q) = n(s)

(
k

k2 −
q

q2

)
σ(k − q) ; (8)

and
ψI (s, k; t, p) = e

ip2
2ω (s−t)

∫
q
φ(L, k; s, q) K̃(s, q; t, p) , (9)

satisfying

∂tψI (s, k; t, p) =
1
2

n(t)
∫
k′

e
ip2
2ω (s−t)σ(k ′ − p)e−

ik′2
2ω (s−t)ψI (s, k; t, k ′) , (10)

with initial condition ψI (s, k; s, p) = φ(L, k; s, p) .
Then, the full k-dependent spectrum can then be written as

ω
dI

dωd2k
=

2αsCR

(2π)2ω
Re

∫ L

0
ds

∫ s

0
dt

∫
p

ie−
ip2
2ω (s−t)p · ψI (s, k; t, p) . (11)

One can integrate over transverse momentum the previous expression to obtain the gluon energy
distribution, but always keeping in mind that the integration must respect the kinematical constraint
k < ω since the derivation of the medium-induced emission spectrum assumes that the transverse
momentum of the radiated gluon is small (k � ω).

In order to evaluate this spectrum, first we solve numerically the differential equation satisfied
by φ, Eqs. (7) and (8), which is used to compute the initial condition for that of ψI . Now we can
obtain the solution for ψI by solving its differential equation. Once we have a solution for ψI , we
plug it into Eq. (11) and integrate numerically to obtain the k-dependent spectrum. This can be done
for different realistic interaction models, such as the Yukawa and hard thermal loop parton-medium
interactions, which enter in the previous equations through the collision rate V defined in Eq. (5).

2. Numerical results

In this section we present the results of our numerical analysis. For simplicity, we assume a
constant linear density of scatterings n(t) = n0 and we take CR = 4/9 and αs = 0.3. The results of
our approach are presented here for a Yukawa-type interaction given by V(q) = 8πµ2/(q2 + µ2)22.

We present in Fig. 1 a comparison between the full resummed medium-induced gluon energy
distribution (solid lines) and the GLV N = 1 approximation (dash-dotted lines) for n0 = 1 fm−1 and
µ = 0.6 GeV while varying the medium path length L3. For a fixed linear density, the larger the
path length the larger the discrepancy between the full resummed and GLV N = 1 results since the
opacity expansion is only well justified for small values of n0L. Moreover, at large gluon energies
(ω > ω̄c ≡ µ2L/2), the magnitudes of the full resummed and GLV spectra are, as expected, very
similar, since in this kinematical region the interaction is believed to be dominated by a single hard

2For the results obtained using the hard thermal loop (HTL) formalism [5] see ref. [3].
3The expression of GLV N = 1 spectrum can be found in Appendix B of ref. [3].
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Figure 1: Left: full medium-induced gluon energy distribution for the Yukawa collision rate (solid lines)
compared to the GLV N = 1 result (dash-dotted lines) with µ = 0.6 GeV and linear density n0 = 1 fm−1 for
different values of L as a function of the rescaled gluon energy ω/ω̄c ≡ 2ω/µ2L. Right: same as left panel
for only two values of L in log-log scale.

scattering. To illustrate the asymptotic behavior of the two approaches, we use in the right panel of
this figure a logarithmic scale for both axes, which makes clear that both spectra are suppressed as
ω̄c/ω for ω > ω̄c. At smaller energies (ω < ω̄c) the GLV N = 1 evaluation is much larger than the
full one, given that the former does not account for the coherent effect of multiple scatterings.

A comparison between the full medium-induced gluon energy distribution and the HO result
is presented in Fig. 2. It is worth noticing that this comparison is not straightforward and must
be taken with care as these approaches do not involve the same parameters. We will fix here
q̂L = 1.3 (n0L) µ2 in order to make qualitative comparisons between these evaluations. The solid
lines in Fig. 2 represent the full resummed result for µ = 1.6 GeV (or ω̄c = 39 GeV), in blue,
and µ = 0.9 GeV (or ω̄c = 12.3 GeV), in red, and the dotted ones the HO evaluation for the
corresponding values of q̂ i.e., q̂ = 2.8 GeV2/fm (blue) and q̂ = 0.9 GeV2/fm (red). For large gluon
energies (ω > ω̄c), contrarily to the GLV evaluation, the HO calculation disagrees substantially with
the full resummed one, since in this kinematic region, dominated by a single hard scattering, the
Gaussian approximation is not well justified. In fact, the HO approximation goes much faster to zero
in this region – proportionally to 1/ω2 – than the full result. For lower energies (ω < ω̄c) the two
evaluations still differ. However, in this region the HO calculation is a much better approximation
to the full one than the GLV N = 1 (see Fig. 1).

3. Conclusions

We present here a procedure to evaluate the medium-induced gluon radiation spectrum in-
cluding the full resummation of multiple scatterings which can be used for any realistic interaction
potentials without any further assumptions. This method consists of a set of differential equations
that can be easily solved and which allows us to obtain robust results beyond the usually employed
HO and GLV N = 1 approximations.

We compute the full resummed gluon energy distribution for a Yukawa-like interaction and
compare it to the results obtained within the HO and GLV N = 1 approximations, finding the
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Figure 2: Solid lines: full medium-induced gluon energy distribution for the Yukawa collision rate with
µ = 1.6 GeV (blue) and µ = 0.9 GeV (red) for a medium with n0L = 5 and L = 6 fm vs. the gluon energy ω.
Dotted lines: medium-induced gluon energy distribution within the HO approximation for q̂ = 2.8 GeV2/fm
(blue) and q̂ = 0.9 GeV2/fm (red) and L = 6 fm vs. ω.

discrepancies among them significant. Particularly, the full resummed calculation is smaller than
the GLV N = 1 approximation for low gluon energies since the latter does not account for coherent
effects among multiple scatterings. Nonetheless, at higher energies (ω > ω̄c), the GLV approxi-
mation agrees with the full resummed result, since the interaction is dominated by a single hard
scattering in this kinematic region. On the other hand, the HO spectrum decreases much faster
than the full one in this region, thus resulting in a softer energy spectrum. However, at lower gluon
energies, the HO calculation is a better approximation to the full evaluation than the GLV N = 1
result, emphasizing the importance of including the effects of multiple scatterings.
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