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Simple implementation of color coherence for the
resumation of soft BDMPS-Z gluons
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The evolution of QCD jets under the influence of a dense colored medium leads to the non trivial
modification of the gluon emission spectrum. In themultiple soft scattering regime, for sufficiently
large media, soft and wide angle emissions can be resummed (in the planar limit of QCD) due to
the small formation time of each gluon emission. Similarly to DGLAP evolution, such cascades
correspond to pure Markovian processes and interferences between partons are neglected. In this
strict limit, color coherence effects are absent. In the vacuum this coherence effect is critical to
guarantee that the shower is angular ordered. In the medium, it is known that such color coherence
effects might play a role in suppressing radiation at intermediate emission angles.
We present a simple procedure to implement color (de)coherence effects into the in-medium
evolution equations obtained in the pure Markovian approximation. We verify that the result
obtained is in accordance with previous studies regarding the role of in-medium color coherence
in the evolution of the QCD antenna. The new evolution equation incorporates a novel emission
kernel which enforces color coherence between emitters.
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1. Introduction

When a hard probe propagates through a dense and (sufficiently) long medium the contribution
to the gluon emission spectrum due to the multiple (soft) scatterings (in opposition to single
rare hard scattering) becomes important and has to be taken into account. In the BDMPS-Z
approximation one is able to resum such interactions by assuming that the scattering potential is
harmonic. Parametrically, the gluon emission spectrum in this approximation takes the form [1]

l
dI
dl
∼ UB

√
l2

l
(l < l2) , (1)

where l2 = 1
2 @̂!

2 is the frequency of gluons whose formation time C 5 is of the order of !, with @̂
the medium diffusion coefficient and ! the medium length. The scale l2 divides the spectrum into
two regions: gluons with energy l > l2 are highly suppressed and populate the collinear region
(\ < \2 , where \ is the emission angle and \2 ∼ 1

@̂!3 the emission angle for gluon of frequency l2)
while the region l � l2 is highly populated by large angle gluons (\ � \2).

Since the typical formation time for in-medium gluon emissions satisfies C 5 ∼
√
l
@̂
, these

gluons are formed almost instantaneously (i.e. C 5
!
� 1). As a consequence, since (parametrically)

the phase space for in-medium emission must scale as ! − C 5 ∼ !, we have that each gluon is
emitted decoherently from all the other emissions at any point in the medium. This is the physical
motivation for the Poissonian/Markovian approximation to in-medium gluon emission.

One of the major breakthroughs beyond the BDMPS-Z framework came from the study of the
QCD antenna (i.e. a boson decaying to a quark dipole) in-medium followed by a soft gluon emission.
Such a set up was previously consider in the context of vacuum QCD and lead to the discovery of
angle ordering, which is a critical effect one must consider in order to describe data. In the case
of in-medium evolution, the same set up lead to the following conclusion: if the emission angle is
small compared to \2 than the systems keeps color coherence and the new pair of particles emits
as if they are a single color charge; in the opposite limit when the angle of emission is larger than
\2 the emitters lose color coherence and the spectrum of emission will be that of two independent
color charges [2]. The interference terms present in the spectrum of emission are thus proportional
to

1 − 4−
(

\
\2

)2

∼ Θ(\ > \2) , (2)

where the last term symbolizes the typical step function approximation described above.
Combining these results with the above discussion regarding interferences due to the quantum

mechanical formation time of radiation we see that the phase space for emission is now proportional
to ! −min(C 5 , C3) ∼ ! (where C3 is the typical decoherence time obtained from (2)).

We go beyond the completely decoherent picture by including the corrections due to color
coherence between emitters, while still resuming all the soft gluon emissions. To do this, as we
detail below, we compute the BDMPS-Z spectrum followed by a soft gluon emission and try to
simplify the color structure of the process such that a piece controlling coherence can be extracted.
The phase space of emission is thus proportional to ! − C3 . This result is then applied to the rate
equations.
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2. Gluon in-medium emission followed by a soft gluon

t=0 t=Lt=x+ t=x+
ct=L t=0

x g x ǵ

Figure 1: Interference diagram due to the presence of an extra soft vacuum gluon.

We explicitly compute the diagram present in figure 1 and obtain

ll′
3�

32k32k′3l3l′
=

(
l′

3�

3l′32k′

)g 2��UB
(2c2)l2#2 (#2

2 − 1)2
Re

[ ∫
x6x′6G+G+2z

48k(x
′
6−x6)

× mx |0 ·mx′ |0 Tr〈� (x, z | l), (0))〉G+2 ,G+ 5
980 5 213 〈,02 (0)� 91 (z, x6 | l)�†83 (x′6, x′ | l)〉!,G+2

]
,

(3)

which should be directly compared to the BDMPS-Z equivalent diagram (no blue gluon in figure 1)(
l

3�

32k3l

)In−In
=

2��UB
(2c2)l2(#2

2 − 1)2
Re

[ ∫
x6x′6G+G+2z

48k(x
′
6−x6)mx |0 ·mx′ |0

× Tr〈� (x, z | l), (0))〉G+2 ,G+ Tr〈� (z, x6 | l)�†(x′, x′6 | l)〉!,G+2

]
.

(4)

In the above equationl is the frequency of the in-medium gluon,l′ the energy of the vacuum gluon
(the same convention is followed for the transverse momentum k). The first term on the right hand
side of (3) corresponds to the vacuum emission spectrum of a soft gluon. , denotes the adjoint
Wilson line over the + direction and � corresponds to the full the gluon propagator including the
typical subeikonal corrections taken into account in jet quenchig.

Via direct inspection of the above equations we see that, as expected, the major modification
to the spectrum comes in the form of a novel three point functions for the late time evolution of
the system. In the harmonic approximation, the tree point function gives rise to the following path
integral ∫ x6

z
Dr1

∫ x′6

x′
Dr2 exp

(∫
C

8l

2
(¤r2

1 − ¤r
2
2) −

@̂

4

∫
C

(
r1 · r2 + (r2 − r1)2

))
, (5)

where r1 denotes the transverse position of the gluon in the amplitude and r2 the position of the
gluon in the complex conjugate amplitude. We notice that the term proportional to (r2 − r1)2 is
the same one would obtain in the BDMPS-Z calculation and therefore only the term proportional to
the dot product should encapsulate color coherence effects. In order to extract this contribution we
expand the gluon propagator in the so called titled Wilson line approximation � ∼ �0(xcl), (xcl),
where �0 is the vacuum gluon propagator and xcl is the classical path over which we evaluate the
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Wilson line. In this approximation, both gluons propagate in a straight line (in transverse space)
and we parametrize their trajectories the following way1 (g = G+2 − G+)

r1(C) ∼ x + (C + g)\ r2(C) ∼ x′ + C\ ⇒ r1(ΔC) · r2(ΔC) ∼ (ΔC)2\2 . (6)

In the above equations \ is the emission angle and we have dropped terms that scale with the
formation time, which is much smaller than ΔC = ! − G+2 , the typical time over which the particle
broadens. Combining this parametrization with the tilted Wilson line approximation and (5) we
obtain that the spectrum (3) can be written as the BDMPS-Z result controlled by the following term

1 − Δ<43 ≡ exp
(
− @̂

12
\2(ΔC)3

)
, (7)

which is qualitatively equivalent to (2). Notice that in obtaining (7) we have ignored that during the
time ΔC, the outgoing gluon suffers additional broadening during the same time interval. Therefore
(7) enters the evolution of the shower as a correction to the in-medium splitting kernel. This is
in line with the Markovian approximation for multiple gluon emission, where the broadening and
emission kernels are effectively decoupled.

3. Including color coherence into the rate equations

The rate equations [3] describe the in-medium shower as is if it consisted ofmultiple decoherent
gluon emissions. The kernel of emission for each gluon and its future momentum broadening in
the medium are obtained directly from the BDMPS-Z calculation [1, 4]. In this approximation the
functional that generates the medium induced shower reads [3]

mCZ?0 (C, C0 | D) =
∫

l
� (l, C0)D(?+0 , p0 + l)

+ UB
∫
I

K(l, I, ?+0)
[
D(I?+0 , Ip0 + l)D((1 − I)?+0 , (1 − I)p0 − l) − D(?+0 , p0 − l)

]
.

(8)

The term entering at order O(UB) corresponds to the single particle momentum broadening and
is controlled by the (Fourier transform of the) broadening kernel � (r, C0) = − @̂4 r2. The term
proportional to UB describes the splitting of the incoming state into two outgoing partons, via the
splitting kernel K. The term with a minus sign ensures unitarity.

One can rederive (8) but including the factor (7) and taking into account the diagram where
the blue gluon (see figure 1) couples to the same emitter in amplitude and conjugate amplitude. In
the end, one obtains the new evolution equation which has the same form as (8) but with a novel
splitting kernel

K ′(l, I, ?+0 , C − C0) =

K(l,I, ?+0 )︷                                          ︸︸                                          ︷
2
?+0

%66 (I)
I(1 − I) sin

(
l2

2:2
5

)
exp

(
− l2

2:2
5

) Δ<43 (I,l, ?+0 ,C−C0)︷                                           ︸︸                                           ︷{
1 − exp

(
− @̂

12
\2(I, l, ?+0) (C − C0)

3
)}
.

(9)

1Notice that the in the casewhere the potential in the path integral exponent only has the dipole term, this approximation
does not modify the result.
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Here we define the emission angle as \ (l, I) = l
(1−I)I and :2

5
=

√
@̂(1 − I(1 − I))?+0 (I(1 − I)) is

the typical transverse momentum acquired during the branching process. Notice that the physical
picture detailed in the previous sections is in fact enforced by this kernel of emission: if the emission
angle is large then K ′→ K, while for not so large angles, the new term diminishes the probability
of emission. In the limit where \ → 0 (out of the domain of applicability of the rate equations)
K ′→ 0, i.e. a new emission is forbidden since the new 2-particle system would behave has if they
were a single color charge. Also notice that (as advertised above)∫ !

0
K ′(C) ∼ ! − C3 + O

(
!
C3
3

!3

)
. (10)

4. Conclusion and Outlook

We have presented a simple (phenomenology oriented) way of introducing color coherence
effects into the rate equations which govern multiple soft gluon in-medium branching. The result
obtained obeys the expected scalings and it is of easy physical interpretation.

In the future, it would be interesting to perform a numerical study implementing (9) and explore
its impact on observables sensitive to the angular distribution of radiation.
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