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Under the assumption that a quark-gluon plasma droplet is created in p + A collisions and
partons traversing it will lose their energy, we calculate γ-triggered hadron correlation in p + Pb
collisions at √sNN = 5.02 TeV, within a next-to-leading-order perturbative QCD parton model
with the medium-modified fragmentation functions. The parton energy loss can be controlled
by the scaled jet transport coefficient q̂/T3 within the high-twist (HT) approach. The evolution
informations of such QGP medium created in p + A collisions are provided by the SuperSONIC
hydrodynamics model. With the value of q̂/T3 extracted via single hadron suppressions in A +
A collisions with similar highest initial temperature as in p + A collisions, the γ-hadron spectra
with pγT = 12 − 40 GeV/c show a suppression of 5%∼10% in the most central 0 - 10% p + Pb
collisions at √sNN = 5.02 TeV. We also provide the predictions for γ-hadron suppression in Pb +
Pb collisions at the LHC energies.
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1. Introduction

It is generally believed that γ-jet production is a golden probe for studying the parton energy
loss [1] in high-energy heavy-ion collisions. If we assume that a small QGP droplet is produced in p
+ A collisions and its evolution can be described by hydrodynamics, we can also predict suppression
of γ-hadron production with medium-modified fragmentation functions. We assume that partons
will lose their energy when traversing such a medium and the lost energy is controlled by the jet
transport coefficient q̂ [2] which is defined as the transverse momentum broadening squared per unit
length. It depends on medium temperature T and four fluid velocity uµ in the form q̂ = q̂0

T3

T3
0

pµ ·uµ

p0
,

where T0 is the highest temperature at the center of the medium at the initial time τ0 for the QGP
formation. The information for T and uµ are given by event-by-event simulations of the superSONIC
hydrodynamic model[3, 4]. In our last work [5], we find that the scaled dimensionless initial jet
transport coefficient q̂/T3 is decreasing slightly with the initial temperature. So we believe that
the same value of jet transport coefficient can be approximatively applied for γ-hadron in p + A
collisions as obtained for single hadron in A + A collisions at the similar initial temperature of the
created QGP mediums.

2. The theory model

In p +A collisions, γ-hadron cross section can be expressed as,

dσγh
pA

dyγd2pγTdyhd2phT
=
∑
abd

∫
d2rdzdtA(®r) fa/A(xa, µ2, ®r) fb/p(xb, µ2) xaxb

πz2
d

×
dσab→γd

dt̂
D̃h/d(zd, µ2,∆Ed) +O(αeα2

s ), (1)

where fb/p(xb, µ2) and fa/A(xa, µ2, ®r) are the parton distribution functions and tA(®r) is the nuclear
thickness function. dσab→γd/dt̂ are the tree-level 2 → 2 partonic scattering cross sections. The
NLO correction at O(αeα2

s ) order included in our calculation contains 2 → 2 virtual diagrams and
2 → 3 tree diagrams. We only focus on direct photons which come from the hard processes of the
Compton (qg → qγ) or annihilation (qq̄ → gγ) scattering. With isolation cuts the contribution
from fragmentation photons is only about 10%. We can ignore them here [7].

The medium-modified fragmentation function D̃h/d(zd, µ2,∆Ed) can be expressed as [6],

D̃h/d(zd, µ2,∆Ed) = (1 − e−⟨N
d
g ⟩)

[ z′
d

zd
Dh/d(z′d, µ

2) + ⟨Nd
g ⟩

zg ′

zd
Dh/g(zg ′, µ2)

]
+e−⟨N

d
g ⟩Dh/d(zd, µ2). (2)

With the high-wist formalism [8], the radiative energy loss ∆Ed can be calculated as,

∆Ed

E
=

2CAαs
π

∫
dτ

∫ dl2
T

l4
T

∫
dz ×

[
1 + (1 − z)2

]
q̂d sin2

[
l2
T(τ − τ0)

4z(1 − z)E

]
, (3)

where CA = 3, lT is the transverse momentum of the radiated gluon.
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Using the spectrum in p + p collisions as a baseline, the gamma-hadron nuclear modification

factor Iγh
pA

(zT) =
D

γh
pA

(zT)

D
γh
pp (zT)

can be expressed as a function of zT = phT/pγT [9] . Dγh
pA

(zT) is the
γ-triggered fragmentation function which can be defined as the ratio of γ-hadron cross section to
the trigger photon cross section.

3. Numerical results

We first calculate the γdir-triggered fragmentation function in p + p collisions at √sNN = 0.2
TeV and the corresponding medium modification factor Iγh

AuAu
in 0 - 10% Au + Au collisions. Both

of them agree well with the experimental data. The details are shown in our recent paper [10]. The
predictions for γ-hadron suppression Iγh

PbPb
in Pb + Pb collisions at √sNN = 2.76 TeV and 5.02

TeV for different (0 - 5%, 20 - 30%, 40 - 50%, 60 - 70%) centralities are shown in Fig. 1. The
corresponding q̂0 = 1.8 GeV2/fm in Pb + Pb collisions at √sNN = 2.76 TeV and q̂0 = 2.0 GeV2/fm
in Pb + Pb collisions at √sNN = 5.02 TeV are extracted via comparisons to single inclusive hadron
suppressions in 0 - 5% Pb + Pb collisions at these two energies, respectively [10].

Shown in Fig. 2 are our predictions for Iγh
pPb

in p + Pb collisions at √sNN = 5.02 TeV
with q̂0 = 1.5 GeV2/fm which is extracted from single hadron production in Au + Au collisions
at √sNN = 0.2 TeV which have the similar central temperature as in p + Pb collisions. The
shaded bands indicate variations of the results when one changes the initial time for parton-medium
interaction between τ0 = 0.5 and 1.0 fm/c. For γ-hadron spectra in p + Pb collisions, we see a
suppression of about 5%∼10% due to jet quenching. In both Pb + Pb and p + Pb collisions, the
suppression of γ-triggered hadron spectra becomes weaker with a larger pT trigger photon.
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Figure 1: γdir-hadron suppression factors as a function of zT in 0 - 5%, 20 - 30%, 40 - 50% and 60 - 70% Pb
+ Pb collisions, with 12 < pγT < 40 GeV/c, 0.5 < phT < 15 GeV/c (upper panels) and 40 < pγT < 60 GeV/c,
0.5 < phT < 45 GeV/c (lower panels) at √sNN = 2.76 TeV with q̂0 = 1.8 GeV2/fm (left panels) and at√

sNN = 5.02 TeV with q̂0 = 2.0 GeV2/fm (right panels).

4. Summary

Under the assumption that a QGP droplet is produced in p + Pb collisions at √sNN = 5.02 TeV
and its evolution can be described by hydrodynamics, we predict the suppression of γ-triggered
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Figure 2: γdir-hadron suppression factors as a function of zT in 0 - 10%, 20 - 30%, 40 - 50% and 60 - 80%
p + Pb collisions at √sNN = 5.02 TeV with 12 < pγT < 40 GeV/c, 0.5 < phT < 15 GeV/c (upper panels) and
40 < pγT < 60 GeV/c, 0.5 < phT < 45 GeV/c (lower panels). The shaded bands indicate variations of the
results when one changes the initial time for parton-medium interaction between τ0 = 0.5 and 1.0 fm/c.

hadron spectra within NLO perturbative QCD parton model with medium modified fragmentation
function due to parton energy loss. The parton energy loss is calculated with the high-twist
formalism. The evolution information of the medium created in p + Pb collisions are provided
by event-by-event superSONIC hydrodynamics model. Our numerical results show a suppression
of about 5%∼10% for γ-hadron spectra for 12 < pγT < 40 GeV/c in the most 0 - 10% central
p + Pb collisions at √sNN = 5.02 TeV with the initial jet transport coefficient q̂0 extracted from
the suppression of single hadron spectra in A + A collisions. And we also predict the γ-hadron
productions in Pb + Pb collisions at the LHC energies.
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11935007.
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