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We compute for the spectrum for emitting 1 and 2 soft and collinear gluons from a hard scattering
process in full QCD. This result is important because 1) all current energy loss calculations assume
QED-like independent emissions of multiple gluons, which obviously misses all correlations from
the non-Abelian nature of QCD, and 2) the average high-?) parton emits ∼3 gluons as it escapes
the medium. QCD correlations are therefore critical for any realistic comparison of theoretical
predictions to experimental data on jets and jet substructures in heavy ion collisions. These
calculations additionally provide a benchmark for jet Monte Carlo algorithms.
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1. Introduction

With heavy ion collisions, we wish to explore experimentally and theoretically the non-trivial,
many-body dynamics of QCD. High momentum probes provide the most direct probes of the fun-
damental degrees of freedom in the quark-gluon plasma created in the heavy ion collisions at the
RelativisticHeavy IonCollider (RHIC) and theLargeHadronCollider (LHC). In theweakly-coupled
picture of the energy loss of these high-?) probes, the scattering of the high-?) probe off of in-
medium quasiparticles leads to the stimulated emission of soft and collinear gluon bremsstrahlung
[1]. Reasonable calculations estimate that the number of gluons emitted in a typical propagation
of a high-?) particle through the QGP medium is of the order of 3 [2]. Energy loss calculations
implemented in phenomenological energy loss models have so far included the effects of multiple
gluon emission through a Poisson-like convolution that assumes independence between the emis-
sions of gluons [3]; i.e. the calculations assume that the non-Abelian corrections to a QED-like
treatment of multiple emissions is small. We would like to test this assumption with a calculation
of the correlations in multiple gluon emission in heavy ion collisions. As a first step towards that
derivation, we will compute the multiple gluon emission process, including QCD correlations, for
the multiple gluon emissions associated with a hard scattering process in vacuum, which we present
here. Further, we’ll use what are known as spinor helicity techniques, which are a new way of
computing scattering amplitudes that are often far more efficient than the usual techniques employed
in quantum field theoretic calculations [4–8].

2. A Model Problem

For the case of interest in this work, one finds that the full amplitude can be decomposed as
[4, 5]
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where the sum is performed over all possible permutations of the = + < gluons and 6B is the
usual strong coupling constant, UB ≡ 62

B/4c. In this expression, �CA44
@̄6=@6<

is known as a partial or
color-stripped amplitude, which is gauge invariant. In the literature, various other names have been
given to this gauge invariant component, such as color-ordered amplitude and dual amplitude [4, 5].
Each partial amplitude in the sum corresponds to a particular color flow, which can be naively
thought as the ordering in which the gluons are emitted. That the above decomposition is valid is
a highly non-trivial result and depends on trading structure constants for color generators through
the relationship 5̃ 012 ≡ 8

√
2 5 012 = tr

(
)0 [)1, )2]

)
[4]. The color kinematic decomposition is

especially powerful because the computation of the partial amplitude is significantly easier than the
full amplitude. In particular, partial amplitudes have an extremely compact and simple form when
they maximally violate helicity conservation. These MHV amplitudes have exactly two negative
helicity external particles while all other external particles have positive helicity. This generalizes
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to the notion of N:MHV amplitudes when (: + 2) external particles have negative helicity. The
case where exactly two particles have positive helicity while all the other particles have negative
helicity are called anti-MHV, (MHV).

Using the spinor helicity formalism and the Britto–Cachazo–Feng–Witten (BCFW) on-shell
recursion relation [11], one can show that a general MHV partial amplitude for a process which
involves an arbitrary number of gluons and a quark-antiquark pair is given by [5]

�"�+@̄@6= (?−@̄ , ?+@, 1+, . . . , :−, . . . , =+) =
〈?@̄:〉3〈?@:〉

〈?@̄?@〉〈?@1〉 · · · 〈=?@̄〉
. (2)

The partial amplitude for our MHV helicity configuration expressed in Eq. (2) is remarkably
simple and only a function of the angle brackets. The MHV partial amplitude can be derived
from Eq. (2) by swapping all helicities, which results in changing the angle brackets into square
brackets and multiplying by an overall sign depending on the number of external legs. Thus
|�({ℎ8}) |2 = |�({−ℎ8}) |2.

Armed with Eq. (2) wemay immediately compute the dominant soft and collinear emission of a
single bremsstrahlung gluon radiation associated with @6 → @6 scattering. The relevant amplitude
is

A(1−5+2+3−4+) ' 63〈13〉3〈23〉
(
)5)3)4 1
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)
,

(3)

where we have used the shorthand ) 8 ≡ )08 . We are able to drop the additional contributions to
the amplitudeA(1−5+2+3−4+) from Eq. (1) for the following reason. We are interested in radiation
soft and collinear to the outgoing quark, which is particle 1. Since angle brackets can be thought
of as something akin to the square root of a dot product, 〈15〉 is therefore very small when particle
5, the associated bremsstrahlung radiation for the hard scattering @6 → @6 process, is soft and
collinear to the outgoing quark, particle 1. None of the other permutations of the three gluons will
have a 〈15〉 in the denominator and will therefore be small in comparison to the two terms included
in Eq. (3).

Comparing to the @6 → @6 amplitude, one readily sees for radiation emitted soft and collinear
to the outgoing quark that

A(1−5+2+3−4+) ' 6)5 〈12〉
〈15〉〈52〉A(1

−2+3−4+). (4)

The same logic follows for all other helicity configurations of the hard scattering subprocess. We
therefore have that

〈|A5 |2〉 = 262�̃�
B12
B15B52

〈|A4 |2〉 ≡ |J (1)6 |2〈|A4 |2〉 (5)

where 〈|A4 |2〉 is given by the square of the @6 → @6 amplitude and we have defined the single
gluon emission kernel |J (1)6 |2 in the second line. Notice in the first line the critical overall factor
of 2 due to the MHV contributions.
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One may write the outgoing parton momenta in the usual way for high energy QCD processes
and find that the emission spectrum derived above gives

3#
(1)
6

33:
' ��

UB

c2
1
G

1
:2
⊥
, (6)

in exact agreement with the single gluon radiation spectrum of [12] associated with the scattering
of a hard quark, in the limit of a massless quark.

Now consider the same process with two gluons soft/collinear with the outgoing fermion. We
have that to leading order in kinematics, i.e. for terms enhanced by inverses of 〈15〉, 〈16〉, and/or
〈56〉,
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)3)4)5)6
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)3)4)6)5

〈12〉〈23〉〈34〉〈46〉〈65〉〈51〉 + (3↔ 4)
]

(7)

Simplification leads to

8M(1−@̄2+@3−4+5+6+) = 8M4(1−@̄2+@3−4+)S2(5, 6), (8)

where the two particle soft factor is
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∑
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)
, (2(5, 6) ≡
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One may straightforwardly square the amplitude to find

|S2(5, 6) |2 = 64

[
�̃2
�

B2
12

B15B25B16B26
+ �̃� �̃�

B12
B56

tr(/2/5/1/6)
B15B25B16B26

]
. (10)

The NMHV contribution is non-trivial to calculate. One finds the result
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. (11)

Combining the MHV and NMHV results yields

|S2,C>C |2 =
2�̃� B12
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. (12)
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3. Conclusions

We presented here the one and two gluon soft and collinear bremsstrahlung associated with
hard quark-gluon scattering in vacuum as computed using spinor helicity techniques. The one gluon
emission derivation is trivial and reproduces exactly the long-known results from QCD. The two
gluon emission result, Eq. (12), requires significant additional effort to compute the next-to-maximal
helicity violating contributions. It’s unclear how exactly to adapt spinor helicity techniques to the
hot and dense quark-gluon plasma environment or whether there is enough gain in efficiency to allow
for computing multiple gluon emission in this environment. There might be a useful application
of the two gluon emission result in computing particle correlations in cooler environments such as
? + ? and ? + � collisions.
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