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Lattice calculation of transport coefficient q̂ in pure gluon
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The transport coefficient q̂ is a leading coefficient that controls the modification of the hard parton
traversing QGP, and hence, responsible for the suppression of the high transverse momentum
(transverse to the beam direction) charged-hadrons in heavy-ion collisions. In this article, we
present the first unquenched lattice QCD calculation of q̂. The calculation is carried out using
(2+1)-flavor of quarks, using the highly improved staggered quark action (HISQ) and tree-level
Symanzik improved gauge action. The calculation is performed in a wide range of temperatures,
ranging from 200MeV < T < 800MeV usingMILC code package. We considered a leading-order
process where a hard parton scatters off the glue field of a thermal QCD medium by exchanging a
Glauber gluon (whose transverse momentum is larger than its longitudinal components). The hard
scale associated with the jet parton allows the coupling of the gluon to that parton to be treated in
perturbation theory. The coupling of the gluon to the medium is treated non-perturbatively. This
non-perturbative part is expressed in terms of a non-local (two-point) field-strength-field-strength
operator product which can be Taylor expanded after analytic continuation to the deep Euclidean
region. Such an expansion allows us to write q̂ in terms of a series of local operators, which are
suppressed by factors of the hard parton energy. The calculated q̂ and its temperature dependence
demonstrates reasonable agreement with the phenomenological extraction carried out by the JET
collaboration.
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1. Introduction

The suppression of high transverse momentum (high-pT) charged-hadrons and inclusive jets in
relativistic heavy-ion collisions at RHIC and LHC is considered as an indicator of the presence of the
strongly-coupled quark-gluon plasma (QGP). Among existing known coefficients characterizing the
energy-loss of the hard parton traversing QGP, the transport coefficient q̂ is the leading coefficient
that controls the rate of medium-induced radiative energy loss of the hard parton inside QGP. The
coefficient q̂ is defined as average squared transverse momentum broadening per unit length of the
medium. Over the past years, several attempts have been made to compute q̂ from first principles,
each with its own assumptions and region of validity [1–6]. In limit of high temperature, the
hard-thermal-loop (HTL) perturbation theory predicts q̂ to scale as a product of T3 times log(E/T)
[2]. A lattice gauge theory based formalism has also been proposed by the authors of Ref. [3–5].
A phenomenology based extraction of q̂ has also been carried out by the JET [7] and JETSCAPE
[8] collaborations. Moreover, the work presented by the authors of Ref. [6] indicate that q̂ also
possesses a dependence on the resolution scale of the hard parton.

In these proceedings, we follow the methodology outlined in the article [3] and compute q̂
using lattice gauge theory. We shall present our first estimates of the temperature dependence of q̂
for the hard quark traversing the pure gluon plasma and 2+1 quark-flavor QCD plasma.

2. Computing operators for pure gluon plasma and 2+1 flavor QCD plasma

In this work, we briefly discuss the framework to compute q̂ as outlined in Ref. [3]. We consider
the propagation of a hard quark carrying light-cone momentum q = (µ2/2q−, q−, 0⊥) ∼ (λ2, 1, 0)q−

through a section of the plasma at temperature T , where, λ � 1, q− � ΛQCD, and µ is off-shellness
of the hard quark. We consider a leading order (LO) process, in which the hard quark traveling along
the negative z-direction exchanges a transverse gluon with the plasma. In this frame q0 > 0, qz < 0,
and q0 ≤ |qz |. Thus, the light-cone momentum of the quark q+ = q0+qz√

2
≤ 0 and q− = q0−qz√

2
≥ 0.

We consider this process in the rest frame of the medium with the momentum of the exchanged
gluon as k = (k+, k−, k⊥) ∼ (λ2, λ2, λ)q−.

Applying standard pQCD techniques, one express q̂ for LO process as

q̂ =
8
√

2παs
Nc

∫
dy−d2y⊥

(2π)3
d2k⊥e−i

®k2
⊥

2q− y
−+i ®k⊥.®y⊥

∑
n

〈n|
e−βEn

Z
Tr[F+⊥µ (0)F+⊥µ

(y−, y⊥)] |n〉 , (1)

where Fµν = taFaµν is the gauge field strength, αs is the strong coupling constant at the scale
of the exchanged gluon, β is the inverse temperature, |n〉 is a thermal state with energy En, Z is
the partition function of the thermal medium, and Nc is the number of colors. Computing the
thermal expectation value of the operator F+⊥µ (0)F+⊥µ

(y−, y⊥) on the lattice is challenging due to
the light-cone separation of the two operators. However, using the method of dispersion relation,
one can express q̂ in terms of a series of local field-strength field-strength (FF) operators [3, 9]:

q̂ =
8
√

2παs(µ2)

Nc(T1 + T2)
〈M | Tr[F+⊥µ (0)

∞∑
n=0

(
i
√

2Dz

q−

)n
F+⊥µ
(0)] |M〉(Thermal−Vacuum) , (2)

where T1 + T2 ≈ 2T , and Dz is the covariant derivative along the z-direction.
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The above expression of q̂ is suitable for lattice calculation and can be used to extract q̂ for both
pure gluon plasma and quark-gluon plasma. Note, in the above expression of q̂, the higher-order
terms in the series are suppressed by the hard scale q−, and hence, computing the first few terms
may be sufficient. It is also interesting to mention that a similar kind of operator products containing
the covariant derivatives have been found by the author of Ref. [10] in the analysis of the parton
distribution function on a Euclidean space.

Figure 1: Thermal +Vacuum (T+V) and vacuum (V) expectation value of operators for pure SU(3) lattice of
size nτ = 4, ns = 16. The label u0 represents tadpole improvements for the links in the covariant derivatives.
(a) g2

0a4 ∑2
i=1 Tr(F3iF3i − F4iF4i). (b) g2

0a6 ∑2
i=1 Tr(F3iD2

zF3i − F4iD2
zF4i). (c) g2

0a6 ∑2
i=1 Tr(F3iD4

zF3i −

F4iD4
zF4i).

Figure 2: Same as Fig. 1, except the operators are evaluated on (2+1)-flavor unquenched lattice.

In our first attempt, we consider the following three non-zero operators in q̂ series:
∑2

i=1 Tr(F3iF3i−

F4iF4i),
∑2

i=1 Tr(F3iD2
zF3i − F4iD2

zF4i) and
∑2

i=1 Tr(F3iD4
zF3i − F4iD4

zF4i). To compute the
field strength tensor on the lattice, we employed a clover-leaf discretization, given as Fµν(x) =[
Qµν(x) −Q†µν(x) − 1

3Tr(Qµν(x) −Q†µν(x))
]
/(8ig0a2

L),whereQµν(x) = Uµ,ν(x)+U−µ,ν(x)+U−µ,−ν(x)+
Uµ,−ν(x) represents the sum over four plaquettes (Uµ,ν) around the site x in the µ-ν plane (anti-
clockwise direction), g0 is the bare lattice coupling and aL is the lattice spacing. In the calculation
of the equation of state (EOS), the trace anomaly (ε −3p)/T4 is computed by evaluating the vacuum
subtracted expectation value of the gluon Lagrangian density (−1/4)FµνFµν, where the lattice beta
function, Rβ0 = −adβ0/da, appears as a multiplicative renormalization factor [11]. Since, the FF
operators in our case are similar to operators in trace anamoly, the FF operators

∑
i=1,2
(F2

3i −F2
4i)must

have Rβ0 as the multiplicative renormalization factor.
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The gauge field configurations for both quenched and unquenched plasma are generated using
the public version of Multiple Instruction & multiple data (MIMD) Lattice Computation (MILC)
code package [13]. The thermal configurations are generated with the aspect ratio ns/nτ = 4,
whereas the corresponding vacuum configurations are generated with nτ = ns. For pure SU(3)
plasma, we employed Wilson’s pure SU(3) gauge action, where the input parameter β0 is given as
β0 = 6/g2

0 . The gauge configurations with (2+1)-flavors of quarks are generated using the highly
improved staggered quark action (HISQ) and tree-level Symanzik improved gauge action [11, 12].
The calculations have been done by taking a statistical average over 10000 gauge configurations
generated using theRationalHybridMonte-Carlo algorithm. For the unquenched case, we employed
tuned input parameters (bare coupling, quark masses) published in Ref. [11, 12] by the HotQCD
and TUMQCD Collaboration. The strange quark mass ms was set to the physical value with the
degenerate light quark masses mu,d = ms/20; in the continuum limit, this corresponds to a pion
mass of about 160MeV. The input parameter β0 is related to the bare gauge coupling as β0 = 10/g2

0 .

Figure 3: Temperature dependence of vacuum subtracted FF correlators for lattice size nτ=4, ns=16.
〈O1〉 = Tr[F3iF3i − F4iF4i]/T4, 〈O2〉 = Tr[F3iD2

zF3i − F4iD2
zF4i]/(T4(q−)2), and 〈O3〉 = Tr[F3iD4

zF3i −

F4iD4
zF4i]/(T4(q−)4). We set q− = 100 GeV. (a) 2+1 flavor QCD. (b) Pure SU(3) gauge.

Fig. 1 and 2 shows expectation value of FF operators on pure SU(3) quenched and 2+1 flavor
unquenched lattices, respectively. The vacuum (V) expectation value of Tr[F3iF3i − F4iF4i] is
negligible compared to its thermal + vacuum (T+V) expectation value. For operators with Dz

derivatives, T+V and V results have similar magnitude and sign; we also note T+V and V results
enhance by the same factor as one adds tadpole factor (u0) for the links in the Dz derivative.

Fig. 3(a) and 3(b) displays vacuum subtracted expectation value of FF operators on 2+1 flavor
unquenched and pure SU(3) quenched lattices, respectively. The operator Tr[F3iF3i − F4iF4i]/T4

is dominant compared to FF operators with 2nd-order Dz derivative and 4th-order Dz derivative.
For the full QCD case, our results show a smoother increase in the crossover region.

3. Results and Discussions

The light-cone momentum (energy) q− of the hard quark was set to 100 GeV. We evaluate αs
in Eq. 2 at the scale µ2 = (π/a)2 = (πTnτ)2. This scale is the same as the scale at which our FF
correlators are computed on the lattice due to the momentum cutoff. Fig. 4 shows temperature
dependence of q̂/T3 for pure gluon plasma and (2+1)-flavor QCD plasma computed on the lattice
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of size nτ = 4 and ns = 16. At high temperatures, q̂ scales with T3; we obtain q̂/T3 ∼1.5-2.5
for quenched lattices and q̂/T3 ∼2.5-3.5 for unquenched lattices. Fig. 4 also shows our lattice
results are consistent with phenomenology based extraction carried out by the JET collaboration
[7] (within 2σ uncertainty).
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Figure 4: q̂/T3 as a function of temperature for a pure gluonic plasma and (2+1)-flavor QCD plasma
computed on lattice of size nτ = 4, ns = 16. A comparison with JET collaboration [7] result is also shown.

In these proceedings, we computed q̂ for the hard quark traversing pure gluonic and (2+1)-flavor
QCD plasma for lattice size nτ = 4 and ns = 16. The calculation for finer lattice sizes is ongoing.
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