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In the light of the mass gap between Standard Model (SM) states and possible new particles,
effective field theories are a suitable approach. We take on the non-linear realization of the
electroweak symmetry breaking: the electroweak effective theory (EWET), also known as Higgs
effective field theory (HEFT) or electroweak chiral Lagrangian (EWChL). At higher scales we
consider a resonance electroweak Lagrangian, coupling SM fields to resonances. Integrating out
these resonances and assuming a well-behaved high-energy behavior, some of the bosonic low-
energy constants are determined or constrained in terms of resonancemasses. Present experimental
bounds on these low-energy constants allow us to push the resonance mass scale to the TeV range,
MR

>
∼ 2 TeV, in good agreement with previous estimations.
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1. Introduction

The discovery of theHiggs and the non-observation of new particles has confirmed the Standard
Model (SM) as our paradigm. Consequently, there is a mass gap between the SM and possible new
physics (NP) fields. This gap supports a bottom-up approach, i.e., the use of effective field theories
to analyze systematically the low-energy data to search for fingerprints of heavy scales.

In this approach the low-energy constants (LECs), or Wilson coefficients, are free parameters
from the effective point of view. Although they encode the information about the heavy scales, the
structure of the effective Lagrangian depends on the light-particle content (SM states in this case),
the symmetries and the power counting. The power counting depends on the chosen scheme to
introduce the Higgs field [1]. The more common linear realization of the electroweak symmetry
breaking (EWSB) is a first possibility: the SM effective field theory (SMEFT), where one assumes
the Higgs to be part of a doublet together with the three electroweak (EW) Goldstones, as in the
SM, and the Lagrangian is organized as an expansion in canonical dimensions, being its leading-
order (LO) approximation the dimension-four SM Lagrangian. However, we adopt here the more
general non-linear realization: the EW effective theory (EWET), also known as Higgs effective
field theory (HEFT) or EW chiral Lagrangian (EWChL). In this second option one does not assume
any specific relation between the Higgs and the EW Goldstones and an expansion in generalized
momenta is followed. The LO Lagrangian is given in this case by the purely fermionic and gauge
boson parts of the SM Lagrangian plus the O(p2) operators introducing the Higgs and the EW
Goldstone interactions. It is interesting to stress that the SMEFT is a particular case of the more
general EWET framework.

At shorter distances, heavy-mass resonances are introduced by using a phenomenological
Lagrangian which follows the non-linear realization of the EW symmetry, i.e., respecting the
symmetries and observing the chiral expansion of the EWET.

As a result, two effective Lagrangians are considered here: the EWET at low energies, with
only the SM fields, and the EW resonance theory at high energies, with the SM particles plus heavy
resonances. By integrating out the resonances we can match both Lagrangians; that is, one can
determine the EWET LECs in terms of resonance parameters. Assuming a good short-distance
behavior is an important ingredient in this process. First of all, it is required in order to be able to
consider the resonance theory as a good interpolation between the low- and the high-energy regimes.
Secondly, these constraints are very convenient to reduce the number of resonance parameters and
they allow us to get determinations or bounds in terms of only resonance masses.

The ultimate aim is to combine current experimental bounds on the bosonic EWET LECs with
their determinations or limits in terms of resonancemasses, in order to constrain the NP scales [2, 3].

2. The effective Lagrangians

The EWET Lagrangian is organized as an expansion in generalized momenta [4–6]:

LEWET =
∑
d̂≥2

L
(d̂)
EWET . (1)

As it has been stressed previously, operators are not ordered following their canonical dimensions,
one uses instead the chiral dimension d̂, which indicates their infrared behavior at low momenta [4].
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As a consequence, in this expansion loops are renormalized order by order. In Refs. [2, 6] one
can find the building blocks used to construct operators invariant under the electroweak symmetry
group and the power-counting rules determining their chiral dimensions. For this work, the relevant
bosonic part of the LO EWET Lagrangian is given by1

∆L
(2)
EWET =

v2

4

(
1 +

2 κW
v

h +
c2V

v2 h2
)
〈 uµuµ 〉2 , (2)

being h the Higgs field, uµ the tensor containing one covariant derivative of the the EW Goldstones
and 〈· · · 〉2 indicating an SU (2) trace. Note that κW parametrizes the hWW coupling. The relevant
P-even bosonic NLO EWET Lagrangian from a current phenomenological point of view reads [6]:2

∆L
(4)
EWET =

∑
i

Fi Oi =
F1
4
〈 f µν+ f+µν − f µν− f−µν 〉2 +

i F3
2
〈 f µν+ [uµ, uν] 〉2

+F4〈 uµuν 〉2 〈 uµuν 〉2 + F5〈 uµuµ 〉2 〈 uνuν 〉2 . (3)

In the SM, κW = c2V = 1 and F1,3,4,5 = 0. The W± and Z self-energies are sensitive to the operator
O1 and, therefore, can be accessed through the measurement of the oblique parameter S [8].
Operators O1,3 and O1,3−5 contribute, respectively, to the trilinear and quartic gauge couplings.

The EWET power counting is not directly applicable to the resonance theory. However, the
Lagrangian can be constructed in a consistent phenomenological way, à la Weinberg [4], where
the resonance electroweak theory interpolates between the low- and the high-energy regimes: one
generates the appropriate low-energy predictions and a given high-energy behavior is imposed.
Bearing in mind that we are interested in the resonance contributions to the bosonic O(p4) EWET
LECs, only O(p2) operators with up to one bosonic resonance R are required at tree-level [6],
standing R for any of the four possible JPC bosonic states with quantum numbers 0++ (S), 0−+ (P),
1−− (V) and 1++ (A). The relevant resonance Lagrangian can be found in Refs. [2, 6].

If the heavy resonances are integrated out from the resonance Lagrangian, one recovers the
EWET Lagrangian (3) with explicit values of the LECs in terms of resonance parameters. As it has
been explained previously, short-distance constraints are fundamental here. We note that without
them one would determine the four EWET LECs of (3) in terms of seven resonance couplings and
the resonance masses. The following high-energy constraints have been assumed [2, 6]:

1. Well-behaved form factors. The two-Goldstone and Higgs-Goldstone matrix elements of the
axial and vector currents can be studied through the vector and axial-vector form factors.
Assuming that these four form factors vanish at s → ∞, we can find four constraints.

2. Weinberg Sum Rules (WSRs). The W3B correlator is an order parameter of the EWSB. In
asymptotically-free gauge theories it vanishes at short distances as 1/s3 [9], implying two
superconvergent sum rules [10]: the 1st WSR (vanishing of the 1/s term) and the 2nd WSR
(vanishing of the 1/s2 term). While the 1st WSR is supposed to be also fulfilled in gauge
theories with nontrivial ultraviolet (UV) fixed points, the validity of the 2nd WSR depends
on the particular type of UV theory considered [11].

1An alternative notation a = κW , b = c2V is used also in the literature.
2 These Fj are related to the ai couplings of the Higgsless Longhitano Lagrangian [7] in the form ai = Fi for

i = 1, 4, 5, a2 − a3 = F3.
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LEC Ref. Data LEC Ref. Data

0.89< κW < 1.13 [12] LHC −0.06< F3 < 0.20 [15] LEP & LHC

−1.02< c2V < 2.71 [13] LHC −0.0006< F4 < 0.0006 [16] LHC

−0.004< F1 < 0.004 [14] LEP −0.0010< F4 + F5 < 0.0010 [16] LHC

Table 1: Current experimental constraints on bosonic EWET LECs, at 95% CL [2].

3. Phenomenology

The use of the high-energy constraints explained at the end of the former section has allowed
us to determine or bound the LECs F1,3,4,5 in terms of resonance masses [2]. On the other hand,
the strongest experimental constraints on F1,3,4,5 are shown in Table 1 [2]. We put together all this
information in Figure 1: the predictions of these LECs as functions of the relevant heavy resonance
masses together with the regions allowed by the experimental constraints (green areas in the plots).

We display the dependence of F1 on MV in the top-left plot in Figure 1. If the 1st WSR is
assumed, the dark gray curve shows the predicted upper bound F1 < −v

2/(4M2
V ). Therefore, and

if only the 1st WSR is obeyed, the whole region below this line (gray and brown areas) would be
theoretically allowed. If one accepts moreover the validity of the 2nd WSR, F1 is determined as a
function of MV and MA > MV , being the dark gray curve the limit MA → ∞. The values of F1 for
some representative axial-vector masses are shown in the red (MA = 1.2 MV ), blue (MA = 1.1 MV )
and orange (the limit MA = MV ) curves; being the orange line the lower bound F1 = −v

2/(2M2
V ).

This range of MA ∼ MV corresponds actually to the most plausible scenario [17]. Then, and if both
the 1st and the 2nd WSR are followed, only the gray region would be theoretically allowed.

For F3 the WSRs do not play any role. Considering only P-even operators, one gets F3 =

−v2/(2M2
V ) and we show this theoretical prediction by the black curve in the top-right plot of

Figure 1. If we add possible P-odd contributions, only an upper bound F3 < −v
2/(2M2

A) is found,
which is represented by the same curve but this time with MR = MA. Therefore, the whole region
below this line (gray area) would be allowed in the most general case.

If we assume the two WSRs and consider only P-even operators, F4 is determined in terms
of MV and MA. We show in the bottom-left panel in Figure 1 the theoretical allowed values for
this LEC as function of MV . The upper bound (dark gray curve) is obtained at MA → ∞. Thus,
the theoretically allowed region is the gray area below that curve. The values of F4 for some
representative axial-vector masses are shown in the red (MA = 1.2 MV ), blue (MA = 1.1 MV ) and
orange (the limit MA = MV ) curves again. Notice that the vector and axial-vector contributions
have different signs and exactly cancel each other in the equal-mass limit.

Independently of any assumptions related to WSRs or P-odd operators, the contributions from
vector and axial-vector resonance exchanges cancel exactly in the combination F4+F5 = c2

d
/(4M2

S1
1
)

(being cd the S1WW coupling). This clean prediction of F4 + F5 is shown by the black curve in the
bottom-right plot of Figure 1, as function of MS1

1
v/cd.

Our tree-level predictions from resonance exchange are expected to apply at a scale around the
resonance masses, whereas the experimental constraints on the LECs in Table 1 have been obtained
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Figure 1: Prediction of the EWET LECs F1, F3, F4 and F4 + F5 of (3) as functions of the corresponding
resonance mass (MV , MA or MS1

1
v/cd). The 95%-CL experimentally allowed regions given in Table 1 are

covered by the green areas, and they are further extended by dashed green bands accounting for our estimation
of the one-loop running uncertainties. If the prediction of the LECs depend on both MV and MA, the gray
and/or brown regions cover all possible values for MA > MV . If the 2ndWSR has been assumed, we indicate
it explicitly in the plot, with the corresponding lines for the limit MA = MV (orange), MA = 1.1 MV (blue),
MA = 1.2 MV (red) and MA → ∞ (dark gray). In the case without the 2nd WSR, the prediction for F1 is
given by the gray and brown regions. In case of using only the even-parity operators, it is indicated.

at lower scales. Taking into account these different scales and the known one-loop running of these
LECs [18], the running contributions can be estimated and are indicated in Figure 1 with the dashed
green bands that enlarge the experimentally allowed regions. These are of order 1/(4π2)∼10−3 and
depend on κW and c2V of (2), whose experimental constraints are also given in Table 1.

The main conclusion is that Figure 1 pushes the resonance mass scale to the TeV range,
MR

>
∼ 2 TeV, in good agreement with our previous theoretical estimates of Ref. [17], based on a

NLO calculation of the S and T oblique parameters. The principal results are the following ones:

• The oblique S-parameter gives the most precise LEC determination (F1), implying the lower
bounds MV,A

>
∼ 2 TeV (95% CL).

• The triple gauge couplings provide a weaker limit on F3, which translates in the softer
constraint MV,A

>
∼ 0.5 TeV (95% CL).

• For BSM extensions with only P-even operators and obeying both WSRs, the bounds on F4
constrain the mass of the vector resonance to MV

>
∼ 2 TeV if MA/MV > 1.1 (95% CL).
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• The limit on F4+F5 implies that the singlet scalar resonance would have a mass MS1
1
>
∼ 2 TeV

(95% CL), assuming a S1
1WW coupling close to the hWW one (cd ∼ v).

Experimental constraints start already to be competitive. Much more precise information will be
eventually got using this kind of analysis, once new data from the upgraded LHC runs be available.
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