

Search for a light charged Higgs boson decaying to a W boson and a CP-odd Higgs boson in trilepton final states in pp collisions at 13 TeV with CMS

Ji Hwan Bhyun^{*a*,1,*}

^aDepartment of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea E-mail: ji.hwan.bhyun@cern.ch

A search for a light charged Higgs boson (H^+) decaying to a W boson and a CP-odd Higgs boson (A) using trilepton final states (electron-dimuon or trimuon) is presented. The result is based on data from pp collisions at a center of mass energy of 13 TeV, recorded by the CMS detector, corresponding to an integrated luminosity of 35.9 fb⁻¹. In this search, it is assumed that the H⁺ boson is produced in decays of top quarks, and the A boson decays to two oppositely charged muons. The first upper limits are set on the combined branching fraction for the decay chain.

40th International Conference on High Energy physics - ICHEP2020 July 28 - August 6, 2020 Prague, Czech Republic (virtual meeting)

© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).

¹On behalf of the CMS Collaboration ^{*}Speaker

The Higgs boson with a mass around 125 GeV was discovered in 2012 by the ATLAS and CMS Collaborations [1–3], and its observed properties have been consistent with the expectation in the standard model (SM) [4, 5]. However, there are models beyond the SM which have a different Higgs sector compared to the SM, yet are consistent with the experimental results. Two-Higgs-doublet models (2HDM) are an example of such models [6].

In 2HDM, a charged Higgs boson (H⁺) and a CP-odd Higgs boson (A) are predicted. The H⁺ boson can be mainly produced in top quark decays (pp \rightarrow tt \rightarrow bbW⁻H⁺) and decay to W and A bosons (H⁺ \rightarrow W⁺A) [7, 8]. The A boson can decay to an oppositely charged muon pair (A $\rightarrow \mu^{+}\mu^{-}$). A search is performed to investigate this production and decay mode of H⁺ and A bosons. The A boson mass (m_A) hypotheses between 15 and 75 GeV and the H⁺ boson mass (m_{H⁺}) hypotheses between (m_A + 85 GeV) and 160 GeV are considered. The motivation behind the choice of the range of m_{H⁺} values is based on the mass thresholds of (m_A + m_W) and (m_t - m_b) for the decay. For the two W bosons in the decay chain, semileptonic decay channels (WW $\rightarrow \ell \nu q \bar{q}'$, $\ell = e \text{ or } \mu$) are targeted.

The search utilizes a data set of pp collisions at a center of mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9 fb^{-1} , recorded using the CMS detector [9]. Selected events are required to contain two muons, and one electron or an additional muon. The three leptons should include at least one $\mu^+\mu^-$ pair, and the invariant mass of $\mu^+\mu^-$ pair is required to satisfy $m_{\mu\mu} > 12 \text{ GeV}$ and $|m_{\mu\mu} - 91.2| > 10 \text{ GeV}$ for all the $\mu^+\mu^-$ pairs in an event. In addition, the events are required to contain two or more jets, at least one of which is identified as originating from a b quark. The $m_{\mu\mu}$ distribution is analyzed to look for the A boson resonance. The background of the search originates mainly from tt processes that include a nonprompt lepton from B hadron decays.

No statistically significant evidence of the signal is found, and 95% confidence level (CL) upper limits are set on the product of branching fractions, $\mathcal{B}_{sig} = \mathcal{B}(t \rightarrow bH^+)\mathcal{B}(H^+ \rightarrow W^+A)\mathcal{B}(A \rightarrow \mu^+\mu^-)$. The upper limits on \mathcal{B}_{sig} vary between 1.9×10^{-6} and 8.6×10^{-6} depending on the assumed m_{H⁺} and m_A values, as shown in the Fig. 1.

Figure 1: The upper limits at 95% CL on $\mathcal{B}_{sig} = \mathcal{B}(t \to bH^+)\mathcal{B}(H^+ \to W^+A)\mathcal{B}(A \to \mu^+\mu^-)$ [10]. In the upper (lower) panel, the m_{H⁺} values are assumed to be m_A + 85 GeV (160 GeV).

This result can be used to derive upper limits on the product of branching fractions, $\mathcal{B}(t \rightarrow bH^+)\mathcal{B}(H^+ \rightarrow W^+A)$, at the order of 10^{-2} (10^{-3}) in the type-1 and 2 (X) 2HDM. This is more stringent than the previous results from the CDF experiment, using different decay modes of the A boson [11, 12]. This is the first search for the decay mode of the H⁺ boson (H⁺ \rightarrow W⁺A \rightarrow W⁺ $\mu^+\mu^-$), and it constrains the class of models which predict a significant rate of the production and decay mode of the H⁺ boson.

References

- [1] ATLAS Collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B **716** (2012) 1 [1207.7214].
- [2] CMS Collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [1207.7235].
- [3] CMS Collaboration, Observation of a new boson with mass near 125 GeV in pp collisions at $\sqrt{s} = 7$ and 8 TeV, JHEP 06 (2013) 081 [1303.4571].
- [4] ATLAS and CMS Collaborations, *Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at* $\sqrt{s} = 7$ *and 8 TeV, JHEP* **08** (2016) 045 [1606.02266].
- [5] CMS Collaboration, Combined measurements of Higgs boson couplings in proton-proton collisions at $\sqrt{s} = 13$ TeV, Eur. Phys. J. C **79** (2019) 421 [1809.10733].
- [6] G.C. Branco, P.M. Ferreira, L. Lavoura, M.N. Rebelo, M. Sher and J.P. Silva, *Theory and phenomenology of two-Higgs-doublet models*, *Phys. Rep.* **516** (2012) 1 [1106.0034].
- [7] F. Kling, A. Pyarelal and S. Su, *Light charged Higgs bosons to AW/HW via top decay*, *JHEP* 11 (2015) 051 [1504.06624].
- [8] A. Arhrib, R. Benbrik and S. Moretti, *Bosonic decays of charged Higgs bosons in a 2HDM type-I, Eur. Phys. J. C* 77 (2017) 621 [1607.02402].
- [9] CMS Collaboration, The CMS experiment at the CERN LHC, JINST 3 (2008) \$08004.
- [10] CMS Collaboration, Search for a light charged Higgs boson decaying to a W boson and a CP-odd Higgs boson in final states with $e\mu\mu$ or $\mu\mu\mu$ in proton-proton collisions at $\sqrt{s} = 13$ TeV, Phys. Rev. Lett. **123** (2019) 131802 [1905.07453].
- [11] CDF collaboration, Search for charged Higgs bosons from top quark decays in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV, Phys. Rev. Lett. **96** (2006) 042003 [hep-ex/0510065].
- [12] CDF collaboration, Search for a very light CP-odd Higgs boson in top quark decays from $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV, Phys. Rev. Lett. **107** (2011) 031801 [1104.5701].