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The ENUBET experiment
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The CERN NP06/ENUBET experiment is designing the first “monitored neutrino beam”, i.e.
a neutrino beam with unprecedented control of the flux, energy and flavor of the neutrinos at
source. The original aim of ENUBET was to monitor the a4 production mostly by the detection
of large-angle positrons from three-body semileptonic decays of kaons:  + → 4+c0a4. Over the
years, the ENUBET technique has been extended to cover also the monitoring of the a` from kaon
and pion decays. In this paper, we present these new developments and the overall status of the
project.
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1. ENUBET and the monitored neutrino beams

ENUBET is aimed at designing a narrow-band neutrino beam at the GeV scale, measuring the
flux and flavor at 1% level, and the energy of the neutrinos produced at source with a precision of
∼10%. It is the first “monitored neutrino beam” [1] and the core technology for a new generation of
short-baseline experiments to achieve a 1% precision on the a4 and a` cross-sections and remove
all biases due the a` energy reconstruction. It is essential to lower to <3% the systematic budget
of DUNE and HyperKamiokande and enhance remarkably their discovery reach (equivalent to
doubling the DUNE mass). Finally, this facility is the most natural follow-up of the previous gener-
ation of cross-section experiments – including the possibility to upgrade the CERN ProtoDUNE or
the Fermilab SBN physics programme for a new experimental campaign focused on cross-section
measurements and physics beyond the Standard Model (see e.g. [2, 3]).

2. Beamline

The beamline of ENUBET produces a narrow-band beam of neutrinos with a typical energy
spread of 10% and a large angle between the neutrinos and the target axis (14.8◦). This displacement
ensures that the GeV neutrinos produced in the first non-instrumented part of the beamline (decay
of neutral hadrons, early decay-in-flight of charged particles) do not reach the neutrino detector. In
the latest version of the ENUBET beamline, this is achieved by two dipoles and a set of quadrupoles
shown in Fig. 1. An additional advantage of this configuration is the large distance between the
proton dump, i.e. the element stopping the primary protons that have not interacted with the target,
and the neutrino detector. Again, this reduces the amount of non-monitored neutrinos that reach
the detector in the energy range of DUNE or Hyper-Kamiokande. Possible low-energy residual
neutrinos from the decay-at-rest can be identified by the detector and used for ancillary physics
measurements [4].

At the time of writing, the new beamline has been fully simulated with G4Beamline and
FLUKA, and the optimization of the target and collimators is in progress. This beamline is
based on a purely static focusing system that dilutes the protons up to 4 s. In such a way, the
instantaneous rate in the instrumented decay tunnel does not exceed a few hundreds of kHz and the
pile-up contribution to the background is marginal. The corresponding fluxes are comparable to
the previous version and a full evaluation is in progress. The same beamline is being re-optimized
to account for a horn-based system pulsed at 2-10 ms during the flat top of the proton accelerator.
The proton extraction scheme, proposed for the first time in [5], has been demonstrated in 2018
at the CERN-SPSC at the 20 ms level and the latest tuning based on the simulations of the SPSC
lattice achieved < 10 ms and will be tested at the end of the CERN Long-Shutdown 2 (LS2) [6].
This proton extraction scheme can be used in the static focusing beamline, as well, to provide a time
structure that is employed by the detector for cosmic ray suppression.

3. Tunnel instrumentation

The core of the monitored beams are a rich instrumentation of the decay tunnel that provides
the rate of the leptons produced at large angles. The ENUBET tunnel instrumentation is based on
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Figure 1: Bending section of the ENUBET beamline. The section is located between the target area and the
decay tunnel.

a calorimeter for 4+/c+ separation and of an inner light-weight photon veto for 4+/c0 separation.
This detector also provides the absolute timing of the events and is thus called the “C0-layer”. We
carried out the detector R&D between 2016 and 2018, mostly at the CERN East Experimental
Area [7]. The final choice is an iron-scintillator sampling calorimeter divided into modules that
sample the showers every 4.3 radiation lengths. The scintillator light is collected by WLS fibers
(Y11 by Kuraray) running along the lateral edge of the tiles and bundled on top of the detector. The
photosensors that will be employed are SiPMs produced by Fondazione Bruno Kessler (FBK). The
photon veto is based on plastic scintillators, whose light is transported by WLS fibers toward the
upper part, where the SiPMs are located. A detailed description of the performance of the prototype
is given in [8]. The final ENUBET Demonstrator is a 3 m long instrumented decay tunnel with a
radius of 1 m that will be built in 2021 and tested at CERN after LS2.

4. Particle reconstruction in the decay tunnel

Since 2017, we have developed a dedicated event builder to identify and reconstruct positrons
in the calorimeter with high efficiency and purity. More recently, the event builder for the recon-
struction of muons has been finalized, too. In the muon event builder, the event reconstruction
starts with the identification of a seed. The seed for the muon reconstruction is a visible energy
deposit in the calorimeter cells (Lateral readout Compact Modules, LCMs) of the innermost layer
compatible with a mip i.e. with an energy between 5 and 15 MeV. Around the seed, all LCMs
and t0-layer deposits compatible in space with a muon track are clustered together and constitute
the candidate muon event. The search of the energy deposits is performed taking into account the
expected trajectory of the muon, a straight line from the inner radial layer of LCMs toward the outer
layers in the forward direction. The clustering exploits the time of the energy deposit in the LCMs.
By 2020, the energy deposit is simulated in the most realistic manner plugging the entire waveform
recorded by the digitizers that read the SiPM signal without amplification. The algorithms for peak
identification and pile-up subtraction are under development but preliminary results show that a
timing precision of ∼ 1 ns can be achieved for each LCM even in the presence of pile-up or after-
pulses. Correlated noise may impact on the energy resolution of positrons (' 17%/

√
(� [GeV]) [8]

and low cross-talk devices developed by FBK [9] are being considered for the final detector.
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Figure 2: Distribution of selected muons (signal and background) as a function of the position in the 40 m
instrumented decay tunnel. The signal is highlighted by the beige circle.

We identified a set of variables that give information on the reconstructed event topology both
for positrons and muons. These variables are used by a Neural Network (NN) based on the Root
TMVA package and the event is selected cutting on the output classifier of the network, which
ranges from 0 (background) to 1 (pure 4+ or `+ candidate). The preliminary performance obtained
for muons from  + shows a selection efficiency of about 33 % dominated by the geometrical
efficiency, and a S/N of ∼6. Fig. 2 reports the distribution of the impact point along the tunnel for
the reconstructed muons after the cut on the NN classifier. The corresponding efficiency and S/N
for positrons are 24% and 2.1, respectively.

5. .- monitoring from pion decays

The original ENUBET technique is not suited to monitor muons from the c+ → `+a` decay
since the muons are produced in the forward direction and impinge into the hadron dump without
crossing the instrumented walls of the tunnel. Thanks to the slow extraction, however, the rate
of these muons goes from 1 to 10 MHz/cm2 and the muon range (i.e. the muon energy) can be
measured instrumenting the dump with fast and radiation hard detectors (silicon pads, polysiloxane
scintillator cells [10], etc.) at different depths. The instrumented dump can then monitor the
production rate with systematics much better than the standard 15% precision that can be obtained
in high energy wide-band beams by ionization chambers and identify energy, position and rate at the
single-particle level. NP06/ENUBET is therefore potentially equipped with a tool to determine the
flux of the leading a` with a precision similar to the flux of a4, enhancing remarkably the physics
reach of the facility.

6. Systematic evaluation and physics performance

Since late 2019, we have started the full systematic assessment to demonstrate that ENUBET
can achieve the 1% goal on the a4 and a` fluxes. The technique we chose is inspired by T2K and
uses as priors all the information from the simulation like in a standard beam, including hadro-
production data. Unlike T2K, we include in the priors also the monitoring information: the rate,
energy, and angular distribution of positrons and muons in the decay tunnel, and the information
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from the instrumented hadron dump. These additional priors constrain the flux once we consider
systematic variations on the beam parameters, secondary production yields, the uncertainty in the
transport and interactions of the secondaries in the transfer line and the instrumentation efficiency.
We plan to release the complete systematic matrix by the end of 2021.

ENUBET is thus able to provide a sample of about 104 a4 CC and 106 a` CC in a 500 t detector
located 50 m after the hadron dump (baseline: 90 m) monitored with an expected precision of 1%.
Using the “off-axis narrow-band technique” described in [2], we can provide a measurement of the
neutrino energy just by locating the position of the interaction vertex in the detector, i.e. without
relying on final state particle reconstruction. If we define ' as the distance of the interaction vertex
from the beam axis, the relative beam energy width (Δ�a/�a) at fixed ' (i.e. the neutrino energy
resolution for the a` from pion decay) is 8% for ' ' 50 cm with 〈�a〉 ∼ 3 GeV and 22% for
' ' 250 cm with 〈�a〉 ' 0.7 GeV.
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