

PoS

Production of ⁸³Rb for calibration sources for dark matter and neutrino mass experiments

M. Šefčík,^{*a*,*} D. Vénos,^{*a*} R. Běhal,^{*a*} O. Dragoun,^{*a*} O. Lebeda,^{*a*} D. Seifert^{*a*} and J. Ráliš^{*a*}

^aNuclear Physics Institute, Czech Academy of Sciences, 250 68 Řež, Czech Republic

E-mail: sefcik@ujf.cas.cz

Short-lived isomer ^{83m}Kr with its discrete electron spectrum has ideal properties to be used in the crucial role of calibration source in low energy experiments like KATRIN or XENON. To ensure smooth long-term operation of these experiments, reliable routines for production of ⁸³Rb, which decays to ^{83m}Kr, have to be developed. We describe the methods developed at the Nuclear Physics Institute of the Czech Academy of Sciences at Rez, where ⁸³Rb sources are created for KATRIN predominantly via the reaction ⁸⁴Kr(p,2n)⁸³Rb by colliding accelerated protons with a target filled with natural krypton gas.

40th International Conference on High Energy physics - ICHEP2020 July 28 - August 6, 2020 Prague, Czech Republic (virtual meeting)

*Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).

M. Šefčík

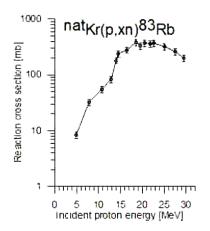


Figure 1: ⁸³Rb excitation function [3].

1. Motivation

The isomeric state 83m Kr ($T_{1/2} = 1.8$ h) produced in the decay of the isotope 83 Rb ($T_{1/2} = 86.2$ d) decays to the stable ground state of 83 Kr through a cascade of the 32.5 and 9.4 keV electromagnetic transitions.

The well known low energy monoenergetic electrons of internal conversion of these transitions are suitable for the test, calibration and systematic measurements of the detector systems used in the dark matter [1] and neutrino mass [2] experiments.

2. ⁸³Rb production

The mother isotope ⁸³Rb is produced in the reaction of protons on the natural krypton gas. The abundances for A = 78, 80, 82, 83, 84, 86 amounts to 0.36, 2.3, 12, 12, 57, 17 %, respectively. The main contributing reaction is ⁸⁴Kr(p,2n)⁸³Rb. The excitation function for the formation of the ⁸³Rb on the natural krypton is presented in Fig. 1.

Smaller amounts of the accompanying radioactive isotopes ⁸⁴Rb ($T_{1/2} = 33$ d) and ⁸⁶Rb ($T_{1/2} = 19$ d) do not disturb in the ^{83m}Kr application because the intensity of their low energy electrons is weak.

For the irradiation of natural krypton with protons at the NPI cyclotrons a pressurised gas target is used.

3. Production method development

For the cyclotron U-120M ($E_p = 26.5$ MeV, $I_p = 15 \mu A$) and the new cyclotron TR-24 ($E_p = 24$ MeV, $I_p = 45 \mu A$), gradually four types of the targets from the aluminium alloy were developed and used within the period 2006-2020 (shown in Fig. 2):

 T1 (water cooling, krypton pressure 7.5 bar, proton current 6 μA, rate 14 MBq/hour of ⁸³Rb, 8 irradiations accomplished),

Figure 2: Left: The four developed targets. Targets T1, T2 and T3 were used with the cyclotron U-120M. Target T4 is used with the cyclotron TR-24. Right: Target T4 attached to TR-24 cyclotron. Blue tubes - water (target body) and helium (input windows) cooling, black cable - proton current measurement, cylindrical gauge – krypton pressure measurement.

- T2 (water + helium cooling of the proton input window, 13 bar, 15 μ A, rate 52 MBq/hour, 21 irradiations),
- T3 (water + helium cooling, centering electrodes, 13 bar, 15 μA, rate 50 MBq/hour, 4 irradiations).
- T4 (water + helium cooling, 10 bar, 45 µA, rate 150 MBq/hour, 3 irradiations).

Up to now the most efficient target T4 was successfully used for the 12, 13 and 2 hour irradiations in which 1.7, 1.9 and 0.3 GBq of ⁸³Rb were produced. The share of ⁸⁴Rb and ⁸⁶Rb activities was 54% and 16%, respectively.

There are further steps that are investigated for production optimization. Optimization of target length and irradiating at 25 MeV at TR-24 (needs a special cyclotron regime) reduces ⁸⁴Rb and ⁸⁶Rb production. Using an alloy with less Fe and Ni decreases the contamination with radioactive Co isotopes. Increasing defocusing of the proton beam at the target input windows reduces their local thermal load.

References

- W.X. Xiong, M.Y.Guan, C.G. Yang, P. Zhang, J.C. Liu, C. Guo, Y.T. Wei, Y.Y. Gan, Q. Zhao, J.J. Li, Calibration of liquid argon detector with ^{83m}Kr and ²²Na in different drift field, arXiv 1909:02207v1, 5 Sep 2019.
- [2] M. Arenz, W.J. Baek, M. Beck et al. (KATRIN collab.), First transmission of electrons and ions through the KATRIN beam line, JINST 13(2018) No.4 P04020.
- [3] Z. Kovacs, F. Tarkányi, S.M. Qaim, G. Stöcklin, Excitation functions for the formation of some radioisotopes of rubidium in proton induced nuclear reactions on ^{nat}Kr, ⁸²Kr and ⁸³Kr with special reference to the production of ⁸¹Rb(^{81m}Kr) generator radionuclide, Appl. Radiat. Isot. 42(1991)No.4 392.