Comparison of symmetric and asymmetric LR model in the context of $0\nu\beta\beta$ decay

Chayan Majumdar
Indian Institute of Technology Bombay, Mumbai 400076, India
E-mail: chayan@phy.iitb.ac.in

Sudhanwa Patra
Indian Institute of Technology Bhilai, Chhattisgarh 492015, India
E-mail: sudhanwa@iitbilai.ac.in

Prativa Pritimita
Indian Institute of Technology Bombay, Mumbai 400076, India
E-mail: prativa@iitb.ac.in

Supriya Senapati*
Indian Institute of Technology Bombay, Mumbai 400076, India
E-mail: supriya@phy.iitb.ac.in

We study the new physics contributions to neutrinoless double beta decay ($0\nu\beta\beta$) in a TeV scale left-right model with spontaneous D-parity breaking mechanism where $g_L \neq g_R$. We compare the predicted numerical values of half life of $0\nu\beta\beta$ decay, effective Majorana mass parameter for three different cases; (i) for manifest left-right symmetric model ($g_L = g_R$), (ii) for left-right model with spontaneous D parity breaking ($g_L \neq g_R$), (iii) for Pati-Salam symmetry with D parity breaking ($g_L \neq g_R$). We show that depending upon the values of the ratio $\frac{g_R}{g_L}$ how different contributions to $0\nu\beta\beta$ decay are suppressed or enhanced.

*Speaker.

© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).
https://pos.sissa.it/
1. Introduction

After the discovery of neutrino mass and mixing by oscillation experiments the immediate questions still remain unanswered are: ‘Whether neutrinos are Dirac or Majorana particles?’ and ‘What gives them such a tiny mass?’. The minimal approach to explain non-zero neutrino mass is the seesaw mechanism [1] which presumes them as Majorana fermions. If neutrinos are Majorana fermions they can initiate a very rare lepton number violating process in nature called neutrinoless double beta decay (0νββ): $\frac{1}{2}X \rightarrow \frac{1}{2}Y + 2e^-$.

Other than the standard mechanism, one possible way to have new physics contributions to 0νββ decay process is to study the process in Left-Right Symmetric Model (LRSM) [2] since the presence of right-handed neutrino and the possibility of left-right mixing can facilitate new decay channels for the process. In manifest LRSM we usually have the gauge couplings for $SU(2)_L$ and $SU(2)_R$ gauge groups are equal i.e., $g_L = g_R$, known as symmetric case. However a different scenario arises when the D-parity symmetry of a left-right theory breaks at a high scale and the local $SU(2)_R$ symmetry breaks at relatively low scale [3]. As an immediate effect we have $g_L \neq g_R$. This scenario is called asymmetric left-right theory. In this work, our major aim is to elucidate how unequal couplings enhance the rate of 0νββ transition in different channels [4]. Also, we show how different contributions to 0νββ decay are suppressed or enhanced depending upon the values of the ratio $\frac{g_R}{g_L}$.

2. Results: Effects on 0νββ decay in symmetric and asymmetric LRSM

Within the frameworks of symmetric and asymmetric left-right model we present a comparative study of different contributions to 0νββ decay process arising due to mediation of either one W_R^- or two W_R^- gauge bosons in terms of half-life and effective mass parameters. In this work we have considered three different cases:

- **Case I**: $g_L = g_R = 0.632 \Rightarrow \delta = \frac{g_R}{g_L} = 1$.
- **Case II**: $g_L = 0.632, g_R = 0.589 \Rightarrow \delta = 0.93$.
- **Case III**: $g_L = 0.632, g_R = 0.39 \Rightarrow \delta = 0.62$.

The occurrence of Pati-Salam symmetry [5] at the highest scale provides large value to Dirac neutrino mass matrix M_D and thus the mixed helicity λ and η diagrams contribute dominantly to the 0νββ transition. At the same time, the $W_L - W_L$ mediation due to exchange of heavy sterile neutrinos and $W_R - W_R$ mediated diagrams due to exchange of heavy RH neutrinos also deliver dominant contributions to the process. The suppression factor in effective mass parameters is found to be $\left(\frac{g_R}{g_L}\right)^4 \simeq 0.13$ in the $W_R^− - W_R^−$ channel while in the $W_L - W_R$ channel it is found to be $\left(\frac{g_L}{g_R}\right)^2 \simeq 0.36$. Similarly, for the half-life estimation when Pati-Salam symmetry is not included in the symmetry breaking chain, the enhancement factor becomes $\left(\frac{g_L}{g_R}\right)^8 \simeq 1.78$ for $W_R^− - W_R^−$ channel while for the $W_L - W_R$ channel the enhancement factor is $\left(\frac{g_L}{g_R}\right)^4 \simeq 1.33$. However when Pati-Salam symmetry appears in the symmetry breaking chain the enhancement factor increases significantly.
In this case, the enhancement factor is found to be \((\frac{g_L}{g_R})^8 \approx 59.29\) for \(W_R - W_R\) channel and for \(W_L - W_L\) channel the enhancement factor becomes \((\frac{g_L}{g_R})^4 \approx 7.7\).

In Fig.1 we have shown various contributions to infer how half-life of \(0\nu\beta\beta\) decay due to different channels varies with the ratio \(\frac{g_L}{g_R}\) i.e. \(\delta\). Here the cyan shaded region is sensitive to the current KamLAND-Zen and GERDA bounds. We can see that only the contributions coming from \(W_L - W_L\) channel due to light neutrino exchange and from \(W_R - W_R\) channel due to heavy neutrino exchange lie within the allowed region. The other dependences of this framework for three different values of \(\delta\)’s are presented in Fig.2.

![Figure 1: Half life of \(0\nu\beta\beta\) process due to all possible channels in the model vs \(\delta\) (= \(\frac{g_R}{g_L}\)).](image)

![Figure 2: The plot in the left most one shows effective majorana mass parameter due to heavy neutrino \(N\) exchange in purely right-handed currents vs \(W_R\) mass. Next one shows effective Majorana mass parameter due to \(W_L - W_R\) mixing (\(\lambda\) diagram) with \(\nu\) exchange vs \(W_R\) mass. Next, the plot shows half life dependency due to \(N\) exchange in \(W_R - W_R\) channel vs mass of \(W_R\) while the right most panel shows half life due to all \(\lambda\) diagrams (\(\nu, N, S\) exchange with \(W_L - W_R\) mixing) vs mass of \(W_R\). In all the plots three different values of \(\delta\) are considered: \(\delta = 0.63, 0.93, 1\).](image)

References