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In this communication, we will discuss the application of Deep Learning models as a discriminant
step to improve sensitivity at searches for new physics. Of particular interest, we will focus on the
transferability of Deep Learning models, where a neural network trained to isolate a specific signal
can still provide sensitivity when deriving upper limits on a different process. This is expanded to
include a discussion on the versatility of Deep Learning models to provide enough sensitivity in
cases where the signal present in the sample does not follow the assumptions of an analysis.
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1. Introduction

In HEP, one particular application of Machine Learning (ML) models is to isolate potential
signals for New Physics (NP) at collider experiments from the Standard Model (SM) background.
In this talk we present how DL models can provide solutions for models that can isolate unexpected
Beyond the Standard Model (BSM) events, paving the way for generic NP searches.

This communication is organised as follows. In the next section we will outline the details of
the data simulation, both for SM events a for a selection of BSM candidates. Next, we will present
the work on the transferability of the Deep Learning (DL) models [1], where it was shown that a
DL model trained on a concrete BSM candidate can still provide competitive discrimination power
when presented with a new, previously unseen BSM realisation. This leads to the natural question
if one can teach DL models to learn what the SM background is in order to be able to identify BSM
candidates as anomalies, this is explored with Anomaly Detection (AD) models in the following
section, where we show how DL AD models can isolate BSM signals [2], none of which used
during training.

2. Data Simulation

The SM events cocktail was prepared as to target processes with final state composed of at least
two leptons (i.e. electrons or muons), at least one jet identified as originated by the fragmentation
of a 1-quark and large scalar sum of transverse momentum (?) ) of all reconstructed particles in the
event (�) > 500 GeV), motivated by a generic search for large mass resonances with intermediate
products involving top-quarks and ,// vector bosons in the decay chain. Our main source of
background is therefore composed of /+jets, top pair production and dibosons.

We produced BSM candidates that are expected to fall into the kinematic and topological
regions of the SM background prepared as discussed above. We focused on a Flavour-Changing
Neutral Currents (FCNC) interaction assocaited with a top quark production and in six different
realisations of vector-like T quarks. FCNC interactions in single top-quark production can appear
in dimension-four or dimension-five operators of an effective SM extension. In the current paper
we focus on the C/ production via FCNC coupling [3, 4] since it produces a final state belonging
to the C/ + - category we are targeting. For the Vector-Like Quark (VLQ) we focus on this C/
final state, considering the pair production of ) quarks via a SM gluon and assuming that ) belongs
to a weak isospin doublet, where the BR() → C/) is approximately 1/2 [5, 6]. Another class
of models predicting the existence of vector-like )-quarks are the composite Higgs Models with
partial compositeness [7]. In such models, new massive colour octets are naturally expected and
thus the pair production of )-quarks can occur via this new heavy gluon, producing events with
kinematic properties expected to be different from the ))̄ production via a SM gluon [8]. In the
presented work we consider as benchmark a heavy gluon with a mass of 3.0 TeV and the same )
masses and weak isospin charge as for the standard production case. To illustrate the effect on the
signal kinematics, different ) masses were considered: 1.0, 1.2 and 1.4 TeV.
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3. Transferability of Supervised Deep Learning Classifiers

Oneof the characteristics ofDLmodels is they are composed of differential blocks, called layers,
which are usually stacked together. This allows DL models to learn hierarchical representations
from the data. As a consequence, DL models can learn features that are useful for similar tasks
on different data. A tantalising example is the one of computer-vision, where it was shown that
DL models learn first features that are transferable to images of classes not shown in training [9],
allowing one to reuse parts of DL models trained on, say to differentiate between cats and dogs to
another, say to differentiate cars from aeroplanes. In [1], we showed that supervised DL models
trained to separate a specific BSM candidate signal from the SM background still manifested
discrimination capacity when presenting another BSM signal candidate not seen during training.

In fig. 1, we see how a model trained on a specific VLQ realisation still provides discrimination
power when presented with any other sample. Of special notice we point to the fact that the FCNC
signal, being the most similar to the SM background, is still being isolated, whereas the transfer-
ability between different VLQ candidates appears to have a little effect in the model performance.
In addition, we observe how every model trained on every signal still holds discrimination power
when presented an FCNC sample. To further illustrate this we computed the upper limits on the
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Figure 1: Discrimination of models trained on specific BSM candidates on different BSM candidates. Left:
The output of a neural classifier trained on the VLQ (with SM production) with mass 1.4 TeV. Centre: The
ROC curves of the same model when passing different BSM candidates. Right: The ROC of the FCNC
signal across all models trained on all the BSM candidates.

expected signal strength using the �!B methods using the outputs of each neural classifier. The
results can be seen in fig. 2, where we observed that the models trained on VLQ signals provide the
same limits across all other VLQ candidates. This shows that DL models are fairly robust against
the changes of specific theory parameters, such as the mass of the VLQ produced, but also on the
topology generating the final state, as can be seen by the absence of limit deterioration across the
VLQ candidates produced from the SM to the heavy-gluon case. These results highlight that even
when trained on a supervised manner, DL models can detect unexpected BSM candidates that were
not using training, suggestions that DLmodels have the ability to learn how to isolate the SM region
of the phase space, helping to isolate unexpected NP.

4. Anomaly Detection as a Tool for Searches at Colliders

Although the previous work showed that supervised neural classifiers offer the possibility to
detect unexpected BSM signals on the data, it would be more satisfying if we had a model that could
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Figure 2: Upper limits on the expected signal strength. Left: Nominal value. Right: Normalised to the
diagonal, which represents the case of using the supervised model on the sample containing the same type
of signal that it was trained on.

learn the SM event distribution as to infer if a new event is likely to belong to the SM or otherwise.
This is addressed by AD, where one train a model on normal samples, which we take to be the SM
cocktail, after which the model will produce anomaly scores on events. This anomaly score can be
seen as new variable on which we can compute upper limits on the expected signal strength. This
was studied in [2], where we tested four different AD methods and benchmarked them against the
same six BSM candidates presented already. We studied two shallow methods: Isolation Forest
and Histogram Based Outlier System); and two deep methods: Autoencoder and Deep Support
Vector Data Description (Deep-SVDD). Each method was trained only on SM events, and their
outputs were used to calculate expected upper limits on signal strength using the �!B method. The
performancewas assessed by comparing to the upper limits obtainedwhen using a supervised neural
discriminator. In fig. 3 we show the outputs of all four AD methods for the background sample and
all BSM candidates. We see that all VLQ samples have their anomaly scores distribution shifted
to the right, providing discrimination power. As for the FCNC, we observe that while the same
happens to the Deep-SVDD, the distribution is very similar to the SM background, as expected.
Since the distributions in fig. 3 are different between themselves and across different samples, it is
important to understand how they are correlated. In fig. 4 we see that both shallow methods are
highly correlated, while the deep ones are not. In particular, we notice that Deep-SVDD and the
AE are considerably uncorrelated. In addition, we observe that the AD methods are picking up
different events as the anomalous ones. While the shallow methods and the AE are focusing on the
tails of the distribution, the Deep-SVDD is capturing other events, showing how these methods are
not learning the same notion of outlyingness. As before, we produced the upper limits for signal
strength and compared them to the ones one would get if using a supervised neural classifier. This
comparison is shown in fig. 5. We observe that for the FCNC obtain least performance degradation
with the Deep-SVDD, while for the VLQ the AE is able to produce limits which are competitive
with those produced in a supervised manner. In addition, we observe how the Deep-SVDD retains
similar performance across different BSM candidates, noticeably across FCNC and VLQ quarks.

4



P
o
S
(
I
C
H
E
P
2
0
2
0
)
2
3
3

Deep Learning Versatility in New Physics Searches

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

HBOS output

2−10

1−10

1

10

210

310

410

510

610

710

E
ve

nt
s 

/ b
in SM prediction

HG 1.0 TeV
HG 1.2 TeV
HG 1.4 TeV
W/o HG 1.0 TeV
W/o HG 1.2 TeV
W/o HG 1.4 TeV
FCNC

-1 = 13 TeV, L = 150 fbspp,  

Sanitised Features

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

iForest output

2−10

1−10

1

10

210

310

410

510

610

710

E
ve

nt
s 

/ b
in SM prediction

HG 1.0 TeV
HG 1.2 TeV
HG 1.4 TeV
W/o HG 1.0 TeV
W/o HG 1.2 TeV
W/o HG 1.4 TeV
FCNC

-1 = 13 TeV, L = 150 fbspp,  

Sanitised Features

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

AE output

2−10

1−10

1

10

210

310

410

510

610

710

E
ve

nt
s 

/ b
in SM prediction

HG 1.0 TeV
HG 1.2 TeV
HG 1.4 TeV
W/o HG 1.0 TeV
W/o HG 1.2 TeV
W/o HG 1.4 TeV
FCNC

-1 = 13 TeV, L = 150 fbspp,  

Sanitised Features

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Deep SVDD output

2−10

1−10

1

10

210

310

410

510

610

710

E
ve

nt
s 

/ b
in SM prediction

HG 1.0 TeV
HG 1.2 TeV
HG 1.4 TeV
W/o HG 1.0 TeV
W/o HG 1.2 TeV
W/o HG 1.4 TeV
FCNC

-1 = 13 TeV, L = 150 fbspp,  

Sanitised Features

Figure 3: Outputs for the different AD methods for all samples.
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Figure 4: Left: Correlations of the outputs of the different methods. Right: The distribution of Jet
multiplicity for the 10% outliers for all methods.

These results show the potential for DL AD models to provide generic discrimination power to
any BSM candidate. In addition, we have also showed that different AD models learn differently
what an outlying event is, supporting the idea that different AD methods are complementary and
sensitive to different BSM candidates.

5. Conclusions

In this talk we presented recent work on the application of DLmodels to isolate BSMcandidates
from the SM background in the context of searches for NP. We showed that DL supervised models
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Figure 5

provide a versatile solution that persists discrimination powerwhen used in aBSMcandidate not used
during training, producing reasonable upper limits on signal strength. In addition, we showed how
modern AD methods based on DL architectures provide powerful generic BSM signal candidates
discriminators, being able to isolate BSM signals that were never used during training. We also
showed that these methods learn differently what na outlier is, highlighting their complementarity
and sensitivity to different BSM candidates.
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