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Machine learning techniques are used to explore the performance of boosted top quark tagging,
treating jets as images. Tagging performances are studied in both hadronic and leptonic channels,
employing a convolutional neutral network (CNN) based technique along with boosted decision
trees (BDT). This computer vision approach is also applied to distinguish between left and right
polarized top quarks, and an experimentally measurable asymmetry variable is constructed to
estimate the polarization. Results indicates that the CNN based classifier is more sensitive to top
quark polarization than the standard kinematic variables. It is observed that the overall tagging
performance in the leptonic channel is better than the hadronic case, and the former also serves as
a better probe for studying polarization.
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Boosted Top Quark Tagging and Polarization Measurement using Machine Learning

1 Introduction Top quarks have a special status in particle physics due to their high mass and8

their correction to the Higgs mass via loops. Several beyond standard model searches have boosted9

top quarks as their signatures and hence the study of boosted top quarks is extremely important at10

the LHC. Another important aspect of the top quark is its polarization state, which can have very11

interesting implications from different new physics models. In this study [1] we emphasize the top12

tagging performance in its leptonic decay mode using jet images. We also explore the use of this13

computer vision approach for differentiating between the polarization states of the top quark.14

2 Methodology Boosted top jets are produced by generating top pair (pp → tt̄) and W ′15

(pp → W ′ → tb) events, setting mW ′ = 3 TeV , and we refer them as tt̄ and W ′ event samples,16

respectively. Light flavor jets produced in hard QCD events are treated as a background. For our17

polarization study, left (right) polarized top quarks are produced from the aforementionedW ′ decay18

by adjusting the coupling strength gR = 0 (gL = 0) appearing in the W ′ decay vertex [2]. The tt̄19

and QCD samples are generated using PYTHIA8 [3]. In order to access the boosted region of the20

phase space, a cut of 400 GeV is applied to the traverse momenta (pT ) of the outgoing partons21

at tree-level. The W ′ sample is produced interfacing FeynRules v2.0 [4] in the framework of22

an effective theory with MadGraph5_aMC@NLO [5]. In addition, lighter top squark pair events23

(pp→ t̃1 ¯̃t1) are also generated using MadGraph5_aMC@NLO, with top squark mass set to 1 TeV, and24

forced to decay to a top quark and a lightest neutralino ( χ̃0
1 ) of mass 100 GeV. The chirality of the25

produced top quark can be controlled by appropriately changing the t̃1-t- χ̃0
1 coupling [6]. Every26

sample is hadronized using PYTHIA8 and detector effects are simulated using DELPHES v3.4 [7]27

with its Compact Muon Solenoid (CMS) card.28

Fatjets of radii R = 1.5 are reconstructed using the framework of FastJet v3.2.1 [8] with29

the anti-kT [8, 9] jet algorithm and categorized those as a hadronic (leptonic) top jet if the jet axis30

lies within a cone of∆R =
√
∆y2 + ∆φ2 < 1.0 around the resultant momentum of the generator-level31

visible decay products of a hadronically (leptonically) decaying top quark. The fatjets have been32

cleaned using the soft-drop procedure [10] for β = 0 and zcut = 0.1 [11]. Jet images are preprocessed33

following the methodology described in Ref. [12] to aid the network in learning their features. It34

is to be noted that we separate each jet into its track, photon, and neutral hadron components, and35

thus three images for each jet (i.e. three input channels) are used to train the network. Fig. 1 shows36

the images of preprocessed leptonic and hadronic top jets (from the tt̄ sample) along with the light37

flavor QCD jets.38

The network architecture used in this study is described in Fig. 2. For the purpose of training39

the network, we have used the Xavier initialization [13] for the weights and the Adam gradient40

descent [14] with a batch size of 100 and a learning rate (step size of the gradient descent) of 0.001.41

We have implemented the aforementioned architecture using the gluon API of Apache MXNet42

v1.5.1 [15] in Python.43

3 Top tagging Network trainings are performed using about 1.2M images for each of the44

signal and background processes corresponding to three sets: (i) hadronic top and QCD jets, (ii)45

leptonic top and QCD jets, and (iii) leptonic and hadronic top jets. Approximately 135K/135K46

signal/background jet images are used for the purpose of testing to ensure that the network is not47

overtrained. We used top jets from tt̄ sample for the training. The network is trained for 2548
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Figure 1: Images of hadronic (left) and leptonic (middle) top jets from tt̄ events, and light flavor QCD jets
(right). These are the inclusive images of jets where the track, photon and neutral hadron components have
been combined.
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Figure 2: A schematic diagram of the network structure. For any given layer, the text above it indicates
the shape of the layer. The shape of a convolution/max-pooling layer (in cyan/gray squares) is represented
as channels@N×N . For a fully-connected layer (in yellow circles) it’s a single number corresponding to its
number of nodes. The text at the bottom indicates the details of the operation performed on the layer above it
in order to obtain the next layer. This includes the kernel sizes used for the convolution and the max-pooling
operations, along with the activation function (ReLU/sigmoid). This diagram has been generated by adapting
the code from https://github.com/gwding/draw_convnet.

epochs, where the training and testing losses are found to saturate to almost identical values. Fig. 349

shows the Receiver Operating Characteristics (ROC) curves to illustrate the hadronic/leptonic top50

against QCD jet discrimination in solid red/blue (left). We try to further improve the obtained51

tagging performances for both hadronic and leptonic channel by training a BDT implemented using52

TMVA [16], where the training and testing samples are the same as that used for the CNN. In53

this training, apart from CNN classifier, the additional variables used are, (i) mass of the jet (mj),54

(ii) the ratios of N-subjettiness variables such as, τ2/τ1, τ3/τ2 and τ4/τ3 [17]. The BDT based55

performances (labeled CNN+BDT) are presented along with the CNN performances in Fig.3. The56

robustness of the trainings (both CNN only as well as CNN+BDT) are tested on top jets from the57

aforementioned W ′ sample, and the corresponding performances are presented by dashed lines.58

4 Top polarization In this section we study the measurement of boosted top quark polariza-59

tion using jet images, and then compare the performance with the typical kinematic polarimeter60

variables [6, 18]. Fig. 4 (upper row), presents the component-inclusive (track + photon + neutral61

hadron) jet images for left (left) and right (right) handed hadronic top quarks. The corresponding62

images of leptonic top quarks are shown in the lower row of Fig. 4. The CNN is trained (tested)63

using about 1M/1M (115K/115K) left/right handed top jet images from the SUSY sample. This64

training is also evaluated on the W ′ sample to validate its robustness.65

3
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Figure 3: The ROC curves(left) corresponding to the hadronic (leptonic) top versus QCD jet trainings in red
(blue). The leptonic top tagging ROC(right) using hadronic top jets as the background.
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Figure 4: The upper row shows component-inclusive images of left-handed (left) and right-handed (right)
hadronic top jets from the SUSY sample. The lower row shows the corresponding images of leptonic top jets
from the same sample.

For the hadronic case we compare the performance of the CNN training with that of a robust66

angular variable, namely cos θ?, that is constructed out of the momenta of the subjets inside the top67

jet [6]. In case of leptonic tops, we compare the CNN performance with the lepton energy fraction68

z` [18].69

An experimentally measurable observable, namely the asymmetry, is constructed to measure70

top quark polarization. It is defined as,71

AP
v =

Nv>c − Nv<c

Nv>c + Nv<c
. (1)

Here Nv>c is the number of top jets subject to the condition that its polarization discriminator v72

(≡ cos θ?, z` or CNN classifier) is greater than a given threshold c, and Nv<c is defined similarly.73

The P refers to the corresponding polarization states of the top jets in a given sample. Note that74

4
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we consider only the two extreme compositions (entirely either left or right handed) in this study.75

The measure of sensitivity of v to the top quark polarization can be presented by Dv = |AL
v − AR

v |.76

This difference is expected to be very small if v is not very sensitive to polarization. The optimum77

value of c for a given discriminator v, is the point at which Dv is maximum. The most sensitive78

polarization discriminator is decided by comparing the peak values of Dv. The asymmetries and79

their differences are presented in Fig. 5 for hadronic (left) and leptonic (right) top jets from the80

SUSY sample. It is evident from the peak value of Dv, that the CNN classifier is ≈2 times more81

sensitive compared to cos θ? for hadronic top jets, and ≈1.3 times more sensitive than z` for the82

leptonic case.83
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Figure 5: The asymmetry variables (Eq. 1) and their absolute differences between the left and right
polarized cases are shown as a function of the discriminator threshold, corresponding to different polarization
discriminators, using hadronic (left) and leptonic (right) top jets from the SUSY sample.

5 Summary The results of boosted top tagging performances in hadronic and leptonic channels84

using jet images are presented. The leptonic channel is of particular note as this has not been widely85

studied yet to the best of our knowledge, and we have found the tagging performance of this channel86

to be significantly better than the hadronic one. An advantage of our methodology is that no lepton87

identification is required for tagging leptonically decaying top jets. We have also presented the88

performance of distinguishing between the two polarization states of the top quark using jet images,89

in both hadronic and leptonic channels. It is observed that the CNN classifier is more sensitive to90

polarization than the kinematic polarimeter variables like cos θ? or z` .91
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