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For many top quark measurements, it is essential to reconstruct the top quark from its decay
products. For example, the top quark pair production process in the all-jets final state has six
jets initiated from daughter partons and additional jets from initial or final state radiation. Due
to the many possible permutations, it is very hard to assign jets to partons. We use a deep
neural network with an attention-based architecture together with a new objective function for
the jet-parton assignment problem. Our novel deep learning model and the physics-inspired
objective function enable jet-parton assignment using jet-wise input variables while the attention
mechanism bypasses the combinatorial explosion that usually leads to intractable computational
requirements. The model can also be applied as a classifier to reject the overwhelming QCD
background, showing increased performance over standard classification methods.
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1. Introduction

The measurements of top quark properties requires the reconstruction of the top quark from
its decay products, leading to the problem of how to assign the reconstructed jets to outgoing
partons from top quark decay. Existing jet-parton assignment studies used kinematic fitting or
machine learning classifiers to estimate a goodness-of-association between underlying partons and
a given jet permutation [1–5]. Since this evaluation is performed for jet combinations, they suffer
from combinatorial explosion as the jet multiplicity increases. We introduce SaJa, which is a self-
attention based neural network [6] for the jet-parton assignment free from requiring jet permutations.
We test SaJa on fully-hadronically decaying CC̄ production events. The full article can be found
in [7] and the code for SaJa has also been made publicly available [8].

2. The SaJa Network

The jet-parton assignment problem can be translated into a jet-wise multi-class classification
task. All jets in fully hadronically decaying CC̄ production events can be divided into five categories:
a 1 jet originating from the decay C → 1, , two light quark jets from the decay , → 9 9 ′, a 1 jet
and two, jets originating from C̄ decays, and jets not associated to the top quark decays, which are
referred to as other jets. In order to resolve the dificulty of distinguish jets produced from C and jets
produced from C̄, we introduce arbitrary indices 1 and 2 for the separation of C and C̄ and their decay
products.

Therefore, the model has the following form:
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where \ denotes the parameters of the model to be optimized, x( 9) indicates the jet in the event with
index 9 and Ĥ ( 9)class indicates the score for jet 9 to be assigned to the category and the corresponding
truth label will be denoted H ( 9)class which is 1 if the jet has been truth-matched to the class and 0
otherwise. The assignments can be inconsistent with the topology of fully-hadronic CC̄. For example,
if there are two jets assigned to 11 or only single jet assigned to ,2, such events are rejected and
then are referred to as topologically invalid.

Since we want to find an optimal jet-wise classification model, it is a natural choice to use the
average of the jet-wise cross entropy as the objective function. However, arbitrary indices 1 and 2
result in an ambiguity of choosing a permutation of C and C̄ between indices 1 and 2. Therefore, we
develop the objective function � (\) as:

� (\) = 1
#

#∑
9=1

(
min (c ( 9)12 , c

( 9)
21 ) + H

( 9)
other log Ĥ ( 9)other

)
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where c ( 9)
UV

= H
( 9)
1

log Ĥ ( 9)
1U
+ H ( 9)
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with U, V ∈ {1, 2}. As the
min function has the permutation invariance property, Eq. 2 is free from the problem of whether
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Figure 1: The directed acyclic graph (DAG) of the jet-wise feed-forward network (left), multi-head self-
attention block (center), and SaJa (right) are shown. � indicates the batch size. # indicates the maximum
jet multiplicity in the batch. � indicates the number of features representing the jet.

to assign C or C̄ to the index 1 or the index 2. Note that eq. 1 did not constraint the form of model
much, thus armed with eq. 2, any neural network architecture, such as convolutional networks or
graph neural networks, can be zero-permutation jet-parton assignment networks at inference time.

Figure 1 shows SaJa and its two building blocks, which are the jet-wise feed-forward network
and the multi-head self-attention block. SaJa features the scaled dot-product self-attention, which
takes three sets of vectors as input and output a single set of vectors and can capture the underlying
patterns of input data. The mechanism of the scaled dot-product self-attention is well documented
in the orignal paper [6] and our full article [7].

We will test the predictive entropy, which is a kind of uncertainty for classification models [9].
As wrong predictions tend to have high uncertainty, predictive entropy can be used to veto wrong
assignments, which degrade the resolution of reconstructed top quark kinematics. Also, the un-
certainty can play a role of out-of-distribution (OOD) test sample detection method. In this study,
QCD multĳet events are exactly OOD. We found that the predictive entropy enabled SaJa to reject
QCD events without additional training on QCD events.

Since SaJa simultaneously predicts on all jets in the event, we use the average of the jet-wise
predictive entropy, H[.̂ ] = 1

#

∑#
9=1

(
−∑

2∈classes Ĥ
( 9)
2 log Ĥ ( 9)2

)
. When the predictive entropy is

higher than a threshold, the event is not selected.

3. Monte Carlo Samples and Event Selection

We use MG5_aMC@NLO v2.2.2 [10] interfaced to Pythia8.212 [11] to produce fully-
hadronic CC̄ pair production with up to two additional jets at next to leading order and multĳet
events at leading order in the final state from proton-proton collisions at

√
B = 13 TeV. For the event

generation, the top quark mass is set to 172.5 GeV. We use Delphes v3.4.2 [12] to simulate the
response of CMS-like detector. The default Delphes CMS card was used except that we perform
anti-:) jet clustering with the parameter ' of 0.4, instead of 0.5, using FastJet v3.3.2 [13].
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Figure 2: The prediction entropy distribution of SaJa without jet shape (left) and SaJa with jet shape (right).

Weuse the trigger selection used in theCMS fully-hadronic CC̄ analysis for the event selection [1].
Jets are required to have ?) > 30 GeV and |[ | < 2.4. We select events with at least 6 jets with
?) > 40 GeV, at least one of which is b-tagged and then require �) =

∑
jets ?) > 450GeV.

After the event selection, we perform geometric matching between jets and the six partons
from fully hadronic CC̄. Top pair events, where all partons are matched is calledmatched events. The
fraction of matched events is about 20%. The unmatched CC̄ events are considered as background to
study the performance of SaJa

We use all jets in the event as input to SaJa, where the jet is represented using reconstructed
variables: ?) , [, q, ?)

�)
, and whether the jet is b-tagged. Also, an additional eight jet shape

variables are tested based on the idea that gluon jets should be assigned to the other class in the
fully hadronic CC̄ topology. We apply Min-Max normalization to scale all features into the range in
[0, 1] in order to make the training converge faster.

We trained SaJa by minimizing the objective function in eq. 2 using the Adam optimization
algorithm with an initial learning rate of 0.001 while decaying the learning rate by 2 when the
validation loss stopped decreasing over 10 epochs. A batch size of 512 is used during the training.

We also used KLFitter [3] for the kinematic likelihood fitting in order to compare the
performance of SaJa. We only studied two cases because of combinatorial explosion. The first
is the most energetic 6 jets, resulting in 18 permutations on average. The second is up to 7 most
energetic jets, giving 126 permutations on average. We chose the permutation with the highest
likelihood as the jet-parton assignment and reject the event if the likelihood is lower than a veto
threshold.

4. Results

The predictive entropy distributions of SaJa with and without additional jet shape variables
are shown in figure 2. Correctly assigned CC̄ events have lower uncertainty compared to wrongly
assigned CC̄, unmatched CC̄, or multĳet events. We observed that the multĳet distribution shows
more bell-shaped and has a peak at a larger entropy value. These two facts mean that the predictive
entropy of SaJa is well calibrated and so is effective in rejecting wrongly assigned signal events
and background events. The ability to detect an out-of-distribution events could be used for a
model-independent new physics search, by training the model on the expected Standard Model
processes.

4



P
o
S
(
I
C
H
E
P
2
0
2
0
)
3
4
8

Top quark pair reconstruction using an attention-based neural network Seungjin Yang

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Correct Assignments

0.0

0.2

0.4

0.6

0.8

1.0
1 

- (
Fr

ac
tio

n 
of

 W
ro

ng
 A

ss
ig

nm
en

ts
)

SaJa
SaJa w/ Jet Shape
KLFitter, N in

jets = 6
KLFitter, N in

jets 7

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Correct Assignments

0.0

0.2

0.4

0.6

0.8

1.0

Un
m

at
ch

ed
 tt

 R
ej

ec
tio

n 
Ra

te

SaJa
SaJa w/ Jet Shape
KLFitter, N in

jets = 6
KLFitter, N in

jets 7

0.0 0.2 0.4 0.6 0.8 1.0
Fraction of Correct Assignments

0.0

0.2

0.4

0.6

0.8

1.0

QC
D 

Re
je

ct
io

n 
Ra

te

SaJa
SaJa w/ Jet Shape
KLFitter, N in

jets = 6
KLFitter, N in

jets 7

Figure 3: The performance measurement curve. 1 - the fraction of wrong assignments for matched CC̄ (left),
the unmatched CC̄ rejection rate (middle) and multĳet rejection rate (right) as a function of the fraction of
correct assignments for matched CC̄. The curves of SaJa without jet shape (blue) and with jet shape (red) are
cut short due to the rejection of topologically invalid events.
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Figure 4: The reconstructed mass distribution of W boson (left) and top quark (right). unmatched CC̄ (blue),
wrongly assigned CC̄ (pink), correctly assigned CC̄, and multĳet (gray).

Figure 3 shows the performance of jet-parton assignment methods in the manner of the receiver
operating characteristic (ROC) curve, where the fraction of wrongly assigned matched CC̄ and the
rejection rate for background events are shown as a function of the fraction of correctly assigned
matched CC̄. The curves are drawn by varying the threshold value of the predictive entropy for SaJa
or the negative log-likelihood for KLFitter. The higher the curve toward the upper right, the more
powerful jet-parton assignment performance and figures shows that SaJa exceeds KLFitter. The
curves of SaJa are cut short because the topologically invalid assignments are rejected.

Figure 4 shows the reconstructed W and top mass distribution, which are obtained using
SaJa with jet shape information and a predictive entropy threshold of 0.074. The total integrated
luminosity of 35.91 fb−1 is used for the normalization. Clear peaks are observed in the W and top
mass range.

5. Conclusion

In these proceedings, we introduced the SaJa network, which uses the self-attention to solve
the jet-parton assignment problem without requiring jet permutations. We also introduced a new
objective function to train the SaJa network on jet-parton assignment task for fully-hadronic top pair
events. SaJa achieved better assignment performance and faster inference speed compared to the
traditional kinematic likelihood fitting method, as implemented in KLFitter. As the SaJa network
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is easily extended to more complex topologies where previous methods were computationally
infeasible, such as ttH, it has great potential for future use.
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