

PoS

Searches for *CP* violation in charmless b-baryon decays at LHCb

Matteo Bartolini^{a,*}

^a University of Genova & INFN Genova, Via Dodecaneso 33, Genova, Italy

E-mail: matteo.bartolini@cern.ch

Multibody decays of b-baryons are a good place to search for *CP* violation due to their rich resonant structure. The results obtained by the LHCb collaboration in the search for *CP* violation in charmless decays like $X_b^0 \rightarrow phh'h''$, where X_b^0 stands for Λ_b^0 or Ξ_b^0 and h,h',h'' either for a π or a *K* meson, are presented here.

40th International Conference on High Energy physics - ICHEP2020 July 28 - August 6, 2020 Prague, Czech Republic (virtual meeting)

*Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).

^{*}On behalf of the LHCb collaboration

Matteo Bartolini

1. Introduction

CP violation is well established in *K* [1], *B* [2, 3] and *D* [4] meson decays and is consistent with SM prediction, but it has not yet been observed in b-baryon decays, despite some interesting indications of non vanishing *CP* asymmetries [5].

 Λ_b^0 and Ξ_b^0 production is abundant in proton-proton collisions and this gives LHCb the opportunity to study multi-body decays of b-flavoured baryons. Multi-body decays are a good place to search for *CP* violation because, due to their rich resonant structures, different amplitudes may interfere and cause local *CP* violation effects to appear in regions of the phase space [6]. In the analyses performed by the LHCb collaboration, different model-independent methods are used to search for *CP* violation in charmless decays like $X_b^0 \rightarrow phh'h''$ and they will be discussed in the following.

2. Triple product asymmetries

Triple product asymmetries (TPA) can be constructed by using the momenta of final states particles in the b-baryon center-of-mass frame. By defining the T-odd variable $C_T \equiv \vec{p}_p \cdot (\vec{p}_h \times \vec{p}_{h'})$ for X_b^0 and $\overline{C}_T \equiv \vec{p}_{\overline{p}} \cdot (\vec{p}_{\overline{h}} \times \vec{p}_{\overline{h'}})$ for \overline{X}_b^0 , we can build the following two asymmetries:

$$A_{\hat{T}} = \frac{N(C_T > 0) - N(C_T < 0)}{N(C_T > 0) + N(C_T < 0)} \qquad \qquad \overline{A}_{\hat{T}} = \frac{\overline{N}(-\overline{C}_T > 0) - \overline{N}(-\overline{C}_T < 0)}{\overline{N}(-\overline{C}_T > 0) + \overline{N}(-\overline{C}_T < 0)}$$

where N and \overline{N} are the numbers of X_h^0 and \overline{X}_h^0 decays.

However, final state interactions (FSI) can also introduce asymmetries [7]. A true CP-violating observable and a true P-violating observable can be defined as

$$a_{CP}^{T-odd} = \frac{(A_{\hat{T}} - \overline{A}_{\hat{T}})}{2}, \qquad \qquad a_P^{T-odd} = \frac{(A_{\hat{T}} + \overline{A}_{\hat{T}})}{2}.$$

In this way FSI effects cancel out in the difference.

The observable a_{CP}^{T-odd} is more sensitive to *CP* violation effects when the difference in strong phase between interfering amplitudes is small [8].

The physics observables $A_{\hat{T}}$, $\overline{A}_{\hat{T}}$ and a_{CP}^{T-odd} are, by construction, largely insensitive to production X_b^0/\overline{X}_b^0 asymmetry and detector-induced charge asymmetries of the final-state particles.

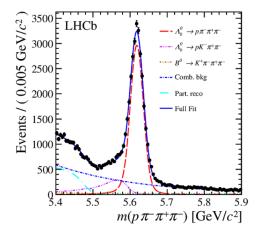
Using a data sample corresponding to an integrated luminosity of 1 fb⁻¹ collected in 2011 at $\sqrt{s} = 7$ TeV and 2 fb⁻¹ collected in 2012 at $\sqrt{s} = 8$ TeV, the LHCb collaboration first measured TPA in three different 4-body decays of the Λ_b^0 and one 4-body decay Ξ_b^0 baryons: $\Lambda_b^0 \to p\pi^-\pi^+\pi^-$ [5], $\Lambda_b^0 \to pK^-\pi^+\pi^-$, $\Lambda_b^0 \to pK^-K^+K^-$, $\Xi_b^0 \to pK^-\pi^+\pi^-$ [9].

Although phase-space integrated asymmetries showed no evidence for *CP* violation in any of the above mentioned channels, an interesting hint of local *CP* violation at the 3.3 σ level including systematic uncertainties was observed in the channel $\Lambda_b^0 \rightarrow p\pi^-\pi^+\pi^-$ [5]. This result was recently superseded by an updated analysis using a data sample corresponding to an integrated luminosity of 6.6 fb⁻¹ [10] and collected from 2011 to 2017.

The channel $\Lambda_b^0 \to p \pi^- \pi^+ \pi^-$ proceeds mainly through the following quasi-two-body decays:

- $\Lambda_h^0 \to N^{*+}\pi^-, N^{*+} \to \Delta^{++}(1234)\pi^-, \Delta^{++} \to p\pi^+$
- $\Lambda_{h}^{0} \rightarrow pa_{1}^{-}(1260), a_{1}^{-}(1260) \rightarrow \rho^{0}(770)\pi^{-}, \rho^{0}(770) \rightarrow \pi^{+}\pi^{-}$

The invariant-mass distribution $m(p\pi^{-}\pi^{+}\pi^{-})$ for the dataset is shown in Fig. 1.


The CP- and P- violating asymmetries have been measured both integrating over all phase space and in specific phase-space regions. The measured asymmetries from the fit to the full dataset are

$$a_{CP}^{T-odd} = (-0.7 \pm 0.7 \pm 0.2)\%,$$
 $a_{P}^{T-odd} = (-4.0 \pm 0.7 \pm 0.2)\%.$

Consistency with the *CP*-conserving hypothesis is observed while a significant non-zero value for a_P^{T-odd} is found; this corresponds to a significance of 5.5 σ .

In order to maximize the sensitivity to local *CP* violation effects, the phase space was divided into bins according to schemes A1, A2, B1 and B2 (see [10]). In the binning schemes A1 and B1 the single resonance $a_1^-(1260)$ dominates whereas schemes A2 and B2 are dominated by contributions from multiple N^{*+} resonances very close in mass.

Schemes A are based on the helicity angles $\theta_{\Delta^{++}}$ and θ_p of the decay topology $\Lambda_b^0 \to (N^{*+} \to (\Delta^{++} \to p\pi^+)\pi^-)\pi^-$, where $\theta_{\Delta^{++}}(\theta_p)$ is the polar angle of the $\Delta^{++}(p)$ in the $N^{*+}(\Delta^{++})$ rest frame. Schemes B are based on ϕ , the angle between the decay planes formed by the tracks $\pi^+\pi^-_{slow}$ and $p\pi^-_{fast}$ in the mother rest frame. The values of the TPA for the different binning schemes are shown in Fig. 2. No compelling evidence for *CP* violation is found in any of them, but scheme B2 shows an interesting deviation at the 2.9 σ level from the null hypothesis of *CP* conservation.

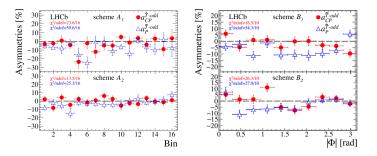


Figure 1: Invariant-mass distribution for $\Lambda_b^0 \to p\pi^-\pi^+\pi^-$ candidates with the result of the fit overlaid

3. Unbinned energy test

In the same article [10] a second method is also used to search for *CP* violation effects in the channel $\Lambda_b^0 \to p\pi^-\pi^+\pi^-$: the energy test. The energy test is a model-independent unbinned test sensitive to local differences between two samples, as it would be in case of *CP* violation. In this case the difference between two samples is probed through the calculation of the following test

Figure 2: Measured asymmetries for the binning scheme (left) A1 and A2 and (right) B1 and B2. The error bars represent the sum in quadrature of the statistical and systematic uncertainties. The $\chi^2/ndof$ is calculated with respect to the null hypothesis and includes statistical and systematic uncertainties

statistic:

$$T = \frac{1}{2n(n-1)} \sum_{i\neq j}^{n} \psi_{ij} + \frac{1}{2\overline{n}(\overline{n}-1)} \sum_{i\neq j}^{\overline{n}} \psi_{ij} - \frac{1}{n\overline{n}} \sum_{i=1}^{n} \sum_{j=1}^{\overline{n}} \psi_{ij}$$
(1)

where $n(\bar{n})$ indicates the candidates in the first(second) sample. Each pair of candidates ij is assigned a weight $\psi_{ij} = e^{-d_{ij}^2/2\delta^2}$, where d_{ij} is their Euclidean distance in phase space and δ is a free parameter that determines the distance scale probed using the energy test. The phase space is defined using the squared masses $m^2(p\pi^+)$, $m^2(\pi^+\pi^-_{slow})$, $m^2(p\pi^+\pi^-_{slow})$, $m^2(\pi^+\pi^-_{slow})$, $m^2(\pi^+\pi^-_{slow})$, $m^2(\pi^+\pi^-_{slow})$. Here $\pi^-_{fast}(\pi^-_{slow})$ refers to the faster (slower) of two negative pions in the Λ_b^0 rest frame.

Similar to the TPA method, one can define 4 subsamples: subsample I consists of particles with $C_T > 0$, subsample II of particles with $\overline{C_T} < 0$, subsample III of particle with $-\overline{C_T} > 0$ and subsample IV of particles with $-\overline{C_T} < 0$. The comparison of sample I+IV to sample II+III allows for a *P*-odd and *CP*-odd test while the comparison of sample I+II to sample III+IV for a *P*-even and *CP*-odd test. The *P* violation is also tested by comparing the combination of sample I+III to sample II+IV. Every test was performed for three different values of δ with their corresponding *p*-values. The obtained results are summarised in Fig. 3.

All *CP*-violation searches using the energy test result in p- values with a significance of 3 σ or smaller. On the other hand, the *P*-violation test shows a significance of 5.3 σ at the two smaller scales probed.

Distance scale δ	$1.6 \ { m GeV^2}/c^4$	$2.7~{\rm GeV^2}/c^4$	$13 \ { m GeV^2}/c^4$
p-value (CP conservation, P even)	3.1×10^{-2}	2.7×10^{-3}	1.3×10^{-2}
p-value (CP conservation, P odd)	$1.5 imes 10^{-1}$	$6.9 imes 10^{-2}$	$6.5 imes 10^{-2}$
p-value (P conservation)	$1.3 imes 10^{-7}$	4.0×10^{-7}	$1.6 imes 10^{-1}$

Figure 3: The *p*-values from the energy test for different distance scales and test configurations

4. Direct *CP* asymmetry

In addition to the TPA and energy test methods, the LHCb collaboration also reported measurements of direct *CP* asymmetries in four-body b-baryon decays. These measurements exhibit different sensitivity to *CP* violation with respect to TPA, which makes the two approaches complementary.

Direct *CP* violation happens when the decay rate of an X_b^0 to a final state f differs from the rate of \overline{X}_b^0 to the *CP*- conjugated final state \overline{f} :

$$A^{CP} = \frac{\Gamma(X_b^0 \to f) - \Gamma(\bar{X}_b^0 \to \bar{f})}{\Gamma(X_b^0 \to f) + \Gamma(\bar{X}_b^0 \to \bar{f})}.$$

Overall, four different Λ_b^0 and two different Ξ_b^0 decays were studied: $\Lambda_b^0 \to p\pi^-\pi^+\pi^-, \Lambda_b^0 \to pK^-\pi^+\pi^-, \Lambda_b^0 \to pK^-\pi^-\pi^-, \Lambda_b^0$

The observable A^{CP} is sensitive to production asymmetry in X_b^0 and \overline{X}_b^0 and to reconstructioninduced charge asymmetries. In order to remove these systematic effects, charmed control channels comprising the same final-state particles such as $\Lambda_b^0 \to (\Lambda_c^+ \to pK^-\pi^+)\pi^-, \Lambda_b^0 \to (\Lambda_c^+ \to p\pi^-\pi^+)\pi^$ and $\Xi_b^0 \to (\Xi_c^+ \to pK^-\pi^+)\pi^-$ are used. These channels have kinematics similar to that of the corresponding charmless mode and no measurable *CP* violation according to the SM prediction; in practice the following *CP*-violating asymmetry is measured:

$$\Delta A^{CP} = A^{CP}_{no-c} - A^{CI}_c$$

where $A_{no-c}^{CP}(A_c^{CP})$ is the asymmetry measured in the charmless (charmed) decays. As was the case for the TPA, the *CP* violating asymmetries in these channels have been measured both integrating over all phase space and in specific phase-space regions. The integrated ΔA^{CP} asymmetries are measured to be:

$$\begin{split} &\Delta A^{CP}(\Lambda_b^0 \to p\pi^-\pi^+\pi^-) = (\pm 1.1 \pm 2.5 \pm 0.6)\% \\ &\Delta A^{CP}(\Lambda_b^0 \to pK^-\pi^+\pi^-) = (3.2 \pm 1.1 \pm 0.6)\% \\ &\Delta A^{CP}(\Lambda_b^0 \to pK^-K^+\pi^-) = (-6.9 \pm 4.9 \pm 0.8)\% \\ &\Delta A^{CP}(\Lambda_b^0 \to pK^-K^+K^-) = (0.2 \pm 1.8 \pm 0.6)\% \\ &\Delta A^{CP}(\Xi_b^0 \to pK^-\pi^+\pi^-) = (-17 \pm 11 \pm 1)\% \\ &\Delta A^{CP}(\Xi_b^0 \to pK^-\pi^+K^-) = (-6.8 \pm 8.0 \pm 0.8)\% \end{split}$$

In all cases the first uncertainties are statistical and the second systematic. These asymmetries are all consistent with the hypothesis of *CP* conservation. *CP* asymmetries have also been measured in the low mass region of the baryonic pair (i.e. $p\pi^{\pm}$ or pK^{-}) and in regions of the phase space that contain specific quasi-two-body decays or three-body decays. No significant *CP* violation effect was observed in any region of the phase space.

5. Conclusions

In this article the latest measurements of *CP* asymmetries in four-body b-baryon decays performed by the LHCb collaboration have been presented. Different Λ_b^0 and Ξ_b^0 decays have been tested with complementary methods and no evidence of *CP* violation has been found though a

interesting deviation at the 2.9 σ level was observed in $\Lambda_b^0 \to p\pi^-\pi^+\pi^-$, in a region of the phase space dominated by N^{*+} resonances. The same channel showed compelling evidence of *P* violation with a significance of 5.5 σ in the region dominated by the $a_1^-(1260)$ resonance.

References

- [1] Christenson, J. H. and Cronin, J. W. and Fitch, V. L. and Turlay, R., Evidence for the 2π Decay of the K_2^0 Meson, https://doi.org/10.1103/PhysRevLett.13.138, 1964
- BABAR Collaboration, Measurement of CP-Violating Asymmetries in B⁰ Decays to CP Eigenstates, https://doi.org/10.1103/PhysRevLett.86.2515, 2001
- [3] Belle Collaboration, Observation of Large CP Violation in the Neutral B Meson System, https://doi.org/10.1103/PhysRevLett.87.091802, 2001
- [4] LHCb Collaboration, Observation of CP Violation in Charm Decays, https://doi.org/10.1103/PhysRevLett.122.211803, 2019
- [5] LHCb Collaboration, Measurement of matter–antimatter differences in beauty baryon decays, https://doi.org/10.1038/nphys4021, 2017
- [6] Michael Gronau and Jonathan L. Rosner, Triple product asymmetries in Λ_b^0 and Ξ_b^0 decays, https://doi.org/10.1016/j.physletb.2015.07.060, 2015
- [7] Michael Gronau and Jonathan L. Rosner, Triple-product asymmetries in K, $D_{(s)}$, and $B_{(s)}$ decays, https://doi.org/10.1103/PhysRevD.84.096013, 2011
- [8] Gauthier Durieux and Yuval Grossman, Probing *CP* violation systematically in differential distributions, https://doi.org/10.1103/PhysRevD.92.076013, 2015
- [9] LHCb Collaboration, Search for CP violation using triple product asymmetries in $\Lambda_b^0 \rightarrow pK^-\pi^+\pi^-$, $\Lambda_b^0 \rightarrow pK^-K^+K^-$ and $\Xi_b^0 \rightarrow pK^-K^-\pi^+$ decays, https://doi.org/10.1007/JHEP08(2018)039, 2018
- [10] LHCb Collaboration, Search for *CP* violation and observation of *P* violation in $\Lambda_b^0 \rightarrow p\pi^-\pi^+\pi^-$ decays, https://doi.org/10.1103/PhysRevD.102.051101, 2020
- [11] LHCb Collaboration, Measurements of CP asymmetries in charmless four-body Λ_b^0 and Ξ_b^0 decays, https://doi.org/10.1140/epjc/s10052-019-7218-1, 2019