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1. Introduction

Dipole operators encode a rich variety of phenomena in both quark and lepton sectors, thus
testing the Standard Model (SM) structure thoroughly, and probing the flavour structure and amount
of CP violation of generic extensions of the SM that manifest in dipoles. Moreover, due to renor-
malization, non-dipole operators mix into dipole ones, and possibly generate observable effects that
can be investigated by the same phenomena that probe directly dipole operators, such as radiative
decays and Electric Dipole Moments (EDMs).

Effects from generic extensions of the SM involving new heavy degrees of freedom can be cap-
tured in a model-independent way by operators of dimension higher than four involving SM fields
only, suppressed by some power of the characteristic scale of New Physics (NP). The so-called SM
Effective Field Theory (SMEFT) framework extends the SM with a complete and minimal set of
higher dimensional operators that respect the SM gauged symmetries, thus providing a universal
parametrisation of heavy NP effects invariant under these symmetries. The one-loop Anomalous
Dimension Matrix (ADM) of the full set of dimension-six operators, which is the set of higher di-
mensional operators on which we focus here, can be found in [1, 2, 3]. The presence of mixing into
dipole operators at one-loop sets important bounds on instances of operators of classes H2X2 (in-
volving two scalar fields and two field strength tensors), X3 (involving three field strength tensors),
and ψ4 (involving four fermions), see e.g. [3, 4].

Here, we discuss the mixing into dipoles in some cases where the leading order effect happens
at two-loops, i.e., when one-loop ADM elements vanish. Namely, operators of the type ψ4. We
then consider phenomenological bounds on the effective coupling of ψ4, notably charged lepton
radiative decays and EDMs, for which experimental bounds typically probe energy scales much
above the direct reach of current and foreseeable colliders. This extends our preliminary analysis
of [5], in which ψ2H3 operators (involving two fermions and three scalars) were discussed.

2. Unsuppressed mixing effects

We consider the SM Lagrangian LSM, to which we add right-handed neutrinos to enlarge the
scope of our analysis, and dimension-six operators, L ≡LSM+νR +∑iCiQi. A basis of dimension-
six operators Qi can be found in [6, 7], hereafter called the Warsaw basis, while a basis of operators
of dimension-six involving right-handed neutrinos can be found in, e.g., [8].

Four-fermion operators are divided into 5 categories in the Warsaw basis, according to the
chiralities of the fields involved, schematically:1 (LL)(LL), (RR)(RR), (LL)(RR) (that we fur-
ther subdivide into semi-leptonic cases, SL, and purely leptonic and four-quark cases, 4L and 4Q,
respectively), (LR)(RL) and (LR)(LR) (together with their Hermitian conjugates in the latter two
cases). We restrict the scope of the operators considered here due to phenomenological reasons, fo-
cusing at the moment on those for which the mixing into dipoles can avoid small Yukawa couplings
in cases where the dipole process involves light external flavours: diagrammatically, operators of
the categories 4L-(LL)(RR), 4Q-(LL)(RR), (LR)(RL) and (LR)(LR) can lead to diagrams (a) and
(b) in Fig. 1; instead, operators of the categories (XX)(XX), X = L,R, and SL-(LL)(RR) neces-
sarily require attaching scalar fields to the external fermion lines to build diagrams that contribute

1The notation L (R) designates left-handed (respec., right-handed) Dirac fields; the Dirac structure is omitted.
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Figure 1: Sample of two-loop diagrams required in the determination of the mixing of four-fermion
operators ψ4 (whose interaction vertex insertions are represented by a filled box) into dipole ones;
diagram (a) shows the exchange of an EW gauge boson, diagram (b) shows the exchange of a
gluon, diagram (c) shows the exchange of a scalar. Diagram (b) stresses effects generated by QCD.

to Green’s functions involving two fermions, one scalar and one gauge boson; this thus leads to
an overall Yukawa suppression if the external flavours are light, an example of a diagram being
given by (c) in Fig. 1. Among the operators that possibly avoid Yukawa suppression, we have
operators that mix into dipoles already at one-loop order: the operators2 Q(1),prst

`equ ≡ ( ¯̀j
per)ε jk(q̄k

sut)

mix into Q(3),prst
`equ ≡ ( ¯̀j

pσµνer)ε jk(q̄k
sσ µνut) at one-loop, while the latter operators mix into dipoles

at one-loop (the same comment would also apply to operators similarly defined involving instead
right-handed neutrinos and down-type quarks). Therefore, we focus on the following operators (T A

are Gell-Mann matrices)

Qprst
`edq ≡ ( ¯̀j

pet)(d̄sqr, j) , Qprst
`e ≡ ( ¯̀pγµ`r)(ēsγ

µet) ,

Q(1),prst
qξ

≡ (q̄pγµqr)(ξ̄sγ
µξt) , Q(8),prst

qξ
≡ (q̄pγµT Aqr)(ξ̄sγ

µT A
ξt) , ξ = u,d ,

Q(1),prst
quqd ≡ (q̄ j

pur)ε jk(q̄k
sdt) , Q(8),prst

quqd ≡ (q̄ j
pT Aur)ε jk(q̄k

sT Adt) ,

whose leading order mixing into dipoles happens at two-loops. This set of operators can easily be
enlarged to include right-handed neutrinos. Other than possibly involving large Yukawas as men-
tioned previously, the mixing of four-fermion operators into dipoles can involve strong couplings
(compare diagrams (a) and (b) in Fig. 1), and moreover can be enhanced by large (color) group fac-
tors. This impacts the phenomenology of the respective operators, since it leads to stronger bounds
on the corresponding Wilson coefficients (WCs). A similar discussion can be found in the SM in
the context of b→ sγ transitions, see e.g. [9, 10].

Under Fierz transformations the operators Q`edq, Q`e, Q(1)
qξ

, Q(8)
qξ

, ξ = u,d, have the same
chiral structure, (LR)(RL). Diagrams (a) and (b) in Fig. 1 with insertions of operators of such
chiral structure would typically result from Barr-Zee diagrams [11] where a heavy scalar field (of
mass ∼ Λ much above the EW scale) is exchanged.

2The fields ` and q (e, u and d) are doublets (respec., singlets) under the gauge symmetry SU(2)L whose indices are
j,k; p,r,s, t are generation indices; ε is the anti-symmetric symbol involving two indices.
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3. Phenomenology

Hereafter, we discuss some phenomenological bounds on the WCs of four-fermion operators;
a complete analysis will be provided in a future publication. Useful expressions and comments, in
particular concerning the extraction of the renormalization constants, can already be found in [5].

A sample of bounds is summarized in Tab. 1. They do not include yet renormalization effects
below the EW scale, such as the mixing of four-fermion operators into dipoles below the EW scale
(that arrives at two-loops as well for the cases considered here). Therefore, they are preliminary
estimates that result uniquely from the leading order mixing at two-loops of four-fermion operators
into dipoles in SMEFT. A future publication will also discuss hadronic uncertainties. We now
comment in turn on the bounds provided in Tab. 1:

CP violation in quark dipoles. NP (and SM) sources of CP violation can for instance be
probed by experimental bounds on neutron and atomic EDMs, which are sensitive to CP violation
in quark electric and chromo-electric dipoles, among other effective operators, see e.g. [12]. Op-
erators Q(1)

qu , Q(8)
qu , Q(1)

quqd and Q(8)
quqd generate quark dipoles at two-loops which can possibly involve

the Yukawa of the top, while operators Q(1)
qd , Q(8)

qd , Q`edq may lead to contributions at two-loops that
involve the Yukawas of the bottom or the tau (among other large Yukawas compared to the down-
or up-quark external/valence flavours). In the case of these four-quark operators involving the top,
there is no analogous effect of four-fermion mixing into dipoles at one- or two-loops in a new effec-
tive field theory defined much below the EW scale, where the top is integrated out together with the
heavy gauge bosons and the Higgs scalar. Although induced at two-loops, powerful bounds follow
from the many available unsuppressed factors: top Yukawa, strong coupling and color factor en-
hancement. We provide in the topmost part of Tab. 1 bounds on the WCs of the operators Q(1)

qu and
Q(8)

qu involving the top, which are constrained to be smaller than . (700 TeV)−2 to (3000 TeV)−2.
These bounds originate from chromo-electric dipole contributions to Hg-EDM (leading to an ef-
fective CP violating pion-nucleon-nucleon coupling, see e.g. [12]), while the bounds extracted
from neutron-EDM [13] and resulting from electric dipole contributions are weaker by a factor
O(20)−O(50).

Charged lepton dipoles. Powerful bounds can also be set on NP contributions to leptonic
dipoles when sources of CP violation and Lepton Flavour Violation (LFV) are present. The opera-
tors Q`e and Q`edq can lead to mixing into dipole operators proportional to tau and bottom Yukawa
couplings, respectively, much larger compared to the light external electron and muon flavours in
e-EDM and µ → eγ transition. Note that below the EW scale four-fermion operators involving the
bottom or the tau can mix into dipoles at two-loops (not at one-loop order for the operators under
consideration here); the corresponding ADM elements that involve EM couplings have not been
determined yet (an estimate of their phenomenological impact is given in [14]). Some bounds on
the NP WCs are provided in Tab. 1, showing that one can probe energy scales as large as∼ 10 TeV
to 400 TeV. In the case of e-EDM, similar bounds have been found by [15].

As discussed in [14], the operator Q`edq generates one-loop contributions to µ → e conver-
sion in nuclei [16] through the operator mµ(ēPX µ)GA

νρGνρ

A , X = L,R, of dimension higher than
six (Ref. [14] discusses NP phenomena below the EW scale; GA

νρ is the field-strength tensor for
gluons), leading in the case of Q`edq to a bound on its Wilson coefficient stronger by a factor of a
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Observable Couplings Bound

Q(1)
qu

Hg-EDM [17]
yt ×|Im[C̃(1),uttu

qu (Λ)]| . O(10−6)TeV−2

Q(8)
qu yt ×|Im[C̃(8),uttu

qu (Λ)]| . O(10−7)TeV−2

Q`e
B(µ → eγ) [18] yτ ×

√
|C̃eττµ

`e (Λ)|2 + |C̃µττe
`e (Λ)|2 . O(10−5) TeV−2

e-EDM [19] yτ ×|Im[C̃eττe
`e (Λ)]| . O(10−7)TeV−2

Q`edq
B(µ → eγ) [18] yb×

√
|C̃ebbµ

`edq (Λ)|2 + |C̃
µbbe
`edq (Λ)|2 . O(10−5) TeV−2

e-EDM [19] yb×|Im[C̃ebbe
`edq(Λ)]| . O(10−7)TeV−2

Table 1: Some preliminary bounds on the WCs C of the operators indicated in the first column.
The considered observables are those in the second column. We indicate in the third column the
combination of WCs at the NP scale Λ (tildes are used to indicate that we move from the interaction
to the mass basis), where flavour indices are shown, with the types of Yukawa factors (yt , yb, yτ

stand for top, bottom, and tau Yukawas, respectively), to which the bounds in the fourth column
apply. See text for more comments.

few compared to the one derived from the radiative decay µ → eγ , shown in Tab. 1.

Throughout the previous discussion, other heavy flavours, such as the charm (much heavier
than the external flavours of the processes studied above), could also be considered.

4. Conclusions

We have discussed how operators of the class ψ4 can be probed indirectly by their mixing-
induced contributions to dipole operators, resulting in a broad set of phenomenological applications
involving both lepton and quark sectors. The leading order mixing of ψ4 operators into dipoles at
two-loops leads to important bounds on the Wilson coefficient of ψ4 derived from B(µ → eγ)

and EDMs, thus showing the power of dipoles in probing the flavour structure of NP, including
the one encoded in non-dipole operators. The dimension-six operators ψ4 are generated in many
extensions of the SM involving new heavy degrees of freedom, that can therefore be constrained
by the bounds discussed previously.

We stress the fact that such two-loop contributions can be proportional to large Yukawa cou-
plings in processes involving light external flavours, and/or color enhanced. The set of renormal-
ization constants describing the mixing of physical four-fermion operators into dipoles, together
with a complete phenomenological analysis, is under preparation, where operators of the category
ψ2H3, see [5], will also be discussed.
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