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1. Introduction

One of the major challenges in contemporary particle physics is to understand confinement:
How are matter building blocks (quarks and gluons) distributed within composite objects we call
hadrons. If we take, as an example, nucleons, we can study their properties by scattering electrons
off them, measure electromagnetic form factors and extract further relevant low-energy hadronic
quantities like electric and magnetic radii. Another way how to study composite objects would be
modifying one of their components and observe the resulting objects and their properties. For nucle-
ons, if one replaces one or both down quarks with strange quark(s), studying the resulting hyperons
might provide us with complementary information to what we already know about nucleons.

Performing experiments involving hyperons while using a corresponding setting turns out to be
a rather difficult task (at least, as compared to the nucleon case) due to their instability. In any case,
both transition and direct electromagnetic form factors can be measured on the electron–positron
colliders, although only above the hyperon–antihyperon pair production threshold. On the other
hand, in the low-energy region, the instability of hyperons can be turned into an advantage and
we might study their Dalitz decays, which allow us to access information about the form factors at
vanishing photon virtuality.

One such an example of the Dalitz decay in the ground-state baryon-octet sector is the process
Σ0 → Λ4+4−, which allows us to study the electromagnetic form factor of the Σ0 → Λ transition
in a small virtuality window of ≈77MeV. Extracting hadronic quantities like electric and magnetic
radii is of a special interest, since it would be compelling to compare these measurement with
theoretical predictions. However, such an endeavour faces several obstacles. Not only are the radii
predicted to be rather small parameters [1, 2], but their effect is further suppressed by a limited
phase space. Therefore, not only high-precision and high-statistics measurement is required to
achieve this goal (such opportunities are expected with an advent of future hyperon factories), but it
becomes clear that the hadronic effects compete in size with electromagnetic radiative corrections.
The calculation of the inclusive NLO QED radiative corrections is the topic of the presented talk.

2. Leading order

Before we get into radiative corrections in greater detail, let us first introduce our notation on
a simple calculation of the leading-order contribution. For the Σ0ΛW vertex we write

〈0| 9 ` |Σ0Λ̄〉 = 4ĒΛ( ®?Λ)�` (?Σ0 + ?Λ) DΣ( ®?Σ0) , (1)

with
�` (@) ≡

[
W` − ("Σ0 − "Λ)

@`

@2

]
�1

(
@2) − 8f`a@a

"Σ0 + "Λ

�2
(
@2) , (2)

where we introduced the Dirac and Pauli form factors �1 and �2, respectively. These, in turn, can
be translated into the magnetic and electric form factors defined in the following way:

�M(@2) ≡ �1(@2) + �2(@2) = ^

(
1 + 1

6
〈A2

M〉@
2 + O(@4)

)
,

�E(@2) ≡ �1(@2) + @2

("Σ0 + "Λ)2
�2(@2) = 1

6
〈A2

E〉@
2 + O(@4) .
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Figure 1: NLO QED radiative corrections for the decay Σ0 → Λ4+4−: a) lepton-loop vacuum-polarization
insertion, b) correction to the QED vertex, c) & d) bremsstrahlung, e) & f) one-loop one-photon-irreducible
(1WIR) contributions, g) Σ0ΛW vertex correction. In the 1WIR contribution each diagram comes in two
variants: with Σ0 or Λ exchanged. Similarly, there are four diagrams contributing to the transition-form-
factor correction g).

Above, we also showed the expansion of these form factors at vanishing photon virtuality @2, which
serves as the definition of hadronic quantities of our interest, i.e., besides ^, which is related to the
magnetic moment, we have introduced 〈A2

M〉 and 〈A
2
E〉, the magnetic and electric radii, respectively.

The effects of the electric radius are suppressed compared to its magnetic counterpart, so the matrix
element squared can be in a very good approximation expressed solely in terms of the magnetic
form factor:

|MLO(G, H) |2 ' 244 |�M(Δ2
"G) |2

(1 − G)
G

(
1 + H2 + a

2

G

)
. (3)

Above, we have used kinematical variables G and H,

G ≡ (?4
+ + ?4−)2

("Σ0 − "Λ)2
, H ≡ 2 ?Σ0 · (?4+ − ?4−)

_
1
2 (?2

Σ0 , ?
2
Λ
, (?4+ + ?4−)2)

, (4)

where, importantly, G denotes the normalized invariant mass of the electron–positron pair squared,
_ denotes the Källén’s triangle function and Δ" ≡ "Σ0 − "Λ. In Eq. (3), notice that the low-G
region is the dominant one.

3. Radiative corrections

The radiative corrections to the differential decay width were already calculated in the past [3],
however, only in the soft-photon approximation. This means that the low-G region was not very
well covered and the absence of the hard-photon corrections resulted in correction values which
were negative all over the Dalitz plot. This was clearly in contrary to the fact that, as the authors of
Ref. [3] already knew, the overall correction to the decay rate is positive.
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Such a situation was indeed unsatisfactory, so we decided to revisit the calculation and provide
inclusive radiative corrections beyond the soft-photon approximation [4]. Not only did we focus on
the complete treatment of the bremsstrahlung contribution (diagrams (c) and (d) in Figure 1, but
we decided to explicitly calculate those contributions which were considered in the literature to be
negligible — the one-photon irreducible contribution (Figures 1e and 1f) and the correction to the
Σ0ΛW vertex (Figure 1g) — to verify this is the case.

As already mentioned earlier, our goal was to calculate radiative corrections for the inclusive
process. Consequently, regarding the bremsstrahlung contribution, the first (but essential) natural
step to do is to perform the low-energy expansion of the form factors appearing in this contribution:

�M
(
(: + @1 + @2)2

)
' �M

(
(@1 + @2)2

) {
1 + 1

6
〈A2

M〉[2: · (@1 + @2)]
}
, (5)

�E
(
(: + @1 + @2)2

)
' �E

(
(@1 + @2)2

) {
1 + 2: · (@1 + @2)

(@1 + @2)2

}
. (6)

This allows us not only to integrate over the energy and emission angle of the bremsstrahlung
photon, but the above expressions also contain form factors in the same form as they appear in the
leading-order expression. This is further useful for potential cancellations.

Moving forward to the one-loop corrections including additional hadronic form factors, simply
from the loop-momenta-power counting, a proper inclusion of the form factors in the corresponding
vertices is essential to regulate the potentially unwanted behaviour in the ultraviolet (UV) region.
It turns out that for the one-photon-irreducible contribution, the finite result is achieved already in
the simplest case when the constant form factors are used: �E(@2) = 0 and �M(@2) = ^, which
translates into

�1(@2) = ^ @2

@2 − "2
+

, �2(@2) = −^
"2

+

@2 − "2
+

. (7)

This is unfortunately not sufficient for the treatment of the correction to the Σ0ΛW. Here, a model
with stronger UV suppression needs to be taken into account. One such example could be

�1(@2) = ^
(
3 −

"2
+
〈A2

M〉
6

)
@2"4

+

(@2 − "2
+
)3
, �2(@2) = −^

"6
+

(@2 − "2
+
)3
. (8)

This ansatz also satisfies the high-energy behaviour dictated by the Brodsky–Lepage scaling
rules [5]. Finally, using the above-stated models, one can show via explicit calculation that the
contributions under consideration are indeed negligible. Moreover, in the case of the two-photon ex-
change diagram, one can show that using the above models one gets numerically compatible results.
This finding is very soothing since we don’t need to be worried about any strong model-dependence
of our results and conclusions.

4. Results

Studying the resulting radiative corrections for the Dalitz plot immediately reveals that com-
pared to the soft-photon approach, there is now a region (when both the G and H are small) with
positive values. This is further reflected in the radiative corrections to the electron–positron-pair
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Figure 2: The total NLO correction for the decay Σ0 → Λ4+4− (solid line) in comparison to its constituents:
The virtual correction is depicted as a dotted line, the bremsstrahlung is shown as a dashed line.

invariant-mass spectrum; see Figure 2. Here one can see that the correction is positive for G . 0.24.
This is sufficient to flip the sign of the overall correction, since the low-G region dominates the
differential decay width.

After we integrate the corrected differential decay width over the Dalitz plot, we are in a
position to predict the value for the following ratio:

' ≡ Γ(Σ
0 → Λ4+4−)

Γ(Σ0 → ΛW)
= 5.541(2) × 10−3 . (9)

In the above quantity, the effects of the electric form factor can be again neglected. Moreover,
the normalization of the magnetic form factor (related to the magnetic moment) drops out in this
ratio. Regarding hadronic parameters, we are thus only left with the magnetic form-factor slope
0 ≡ 1

6 〈A
2
M〉Δ

2
"
, which, being numerically small, can serve as an expansion parameter. Thus we can

write ' = '0 + 0'1 + O(02) , which leads to the final result

' = [5.530(3) + 0.626(2)0] × 10−3 . (10)

Above, the stated uncertainty takes into account the estimated size of the higher-order corrections.
This result is consistentwith the value appearing in the classicalwork of Sidhu andSmith [3]: 'S&S =

(5.532 + 0.6270) × 10−3 . Actually, when the relevant expressions are extracted from Ref. [3] and
present values for physical constants are used, one arrives at 'new

S&S = (5.52975 + 0.626400) × 10−3,
which compares very well with our result ' = (5.52974 + 0.626400) × 10−3, restricting ourselves
only to the corresponding set of contributions. This serves us as a neat cross-check, since these
results were obtained using different methods.

The ratio ' can be further translated into the branching ratios for the two dominant decay
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modes simply by employing the fact that all the Σ0 branching ratios should sum up to 1:

B(Σ0 → ΛW) ' 1
1 + ' = [99.4501(3) − 0.0619(2)0]% , (11)

B(Σ0 → Λ4+4−) ' '

1 + ' = [0.5499(3) + 0.0619(2)0]% . (12)

Using conservative 0 = 0.02(2),B(Σ0 → ΛW) = 99.449(2)% andB(Σ0 → Λ4+4−) = 0.551(2)%.
Finally, we can inspect our initial guess that the NLOQED radiative corrections might compete

in size with the hadronic effects and estimate the size of the correction to the magnetic form-factor
slope Δ0. Taking half of the slope of the total correction to the one-fold differential decay width in
the low-G region (although farther from the threshold), we find

Δ0 ≡ 0(+QED) − 0 '
1
2

dX(G)
dG

����
G=G0�1

≈ −3.5 % . (13)

Above, 0(+QED) is the measured value implicitly containing the QED radiative correction, while 0
corresponds to the purely hadronic quantity. It thus turns out that the Δ0 estimated above is in size
twice as large as the estimate on the slope itself (0 ≈ 1.8(3)% [1]). Translating this discussion
from slopes to magnetic radii, the “measured” radius 〈A2

M〉(+QED) = 〈A
2
M〉 +

6
Δ2
"

Δ is expected to be

negative since 6
Δ2
"

Δ0 ≈ −35GeV−2, while in general for hadronic radii 〈A2〉 ≤ (1 fm)2 ≈ 25GeV−2.

5. Summary

We calculated the complete set of NLO QED radiative corrections to the differential width
of the Σ0 Dalitz decay, i.e., the correction relating the QED LO calculation of the Σ0 → Λ4+4−

process with the measurement in which, in addition, arbitrary many photons are allowed in the final
state. In particular, we calculated the lepton bremsstrahlung beyond the soft-photon approximation,
the two-photon-exchange contribution and the correction to the Σ0ΛW vertex. We checked that the
latter two topologies involving other hadronic form factors can be safely neglected. We were thus
able to present model-independent results in terms of single hadronic parameter 0. Specifically, we
showed precise and conservative predictions for the branching ratios of the two dominant Σ0 decay
modes and estimated the correction to the magnetic form-factor slope as Δ0 ≈ −3.5 %.
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