PoS - Proceedings of Science
Volume 390 - 40th International Conference on High Energy physics (ICHEP2020) - Parallel: Heavy Ions
Fire streaks, electromagnetic effects, directed flow and lifetime of the plasma at SPS energies
V. Ozvenchuk,* A. Szczurek, A. Rybicki
*corresponding author
Full text: pdf
Pre-published on: February 15, 2021
Published on:
Abstract
We present our calculation of electromagnetic effects, induced by the spectator charge on Feynman-$x_F$ distributions of charged pions in peripheral $Pb+Pb$ collisions at CERN SPS energies, including realistic initial space-time-momentum conditions for pion emission. The calculation is performed in the framework of a specific implementation of the fire-streak model, adopted to the production of both $\pi^-$ and $\pi^+$ mesons. Isospin effects are included to take into account the asymmetry in production of $\pi^+$ and $\pi^-$ at high rapidity. A comparison to a simplified model from the literature is made. We obtain a good description of the NA49 data on the $x_F$- and $p_T$-dependence of the ratio of cross sections $\pi^+/\pi^-$. The experimental data favors short times ($0.5<\tau<2$~fm/$c$) for fast pion creation in the local fire-streak rest frame. The possibility of the expansion of the spectators is considered in our calculation, and its influence on the electromagnetic effect observed for the $\pi^+/\pi^-$ ratio is discussed. The influence of directed and elliptic flow, and vorticity on the observed effect is also estimated. We conclude that the fire-streak model, which properly describes the centrality dependence of $\pi^-$ rapidity spectra at CERN SPS energies, also provides realistic initial conditions for pion production. Consequently, it provides a quantitative description of the electromagnetic effect on the $\pi^+/\pi^-$ ratio as a function of $x_F$.
How to cite

Metadata are provided both in "article" format (very similar to INSPIRE) as this helps creating very compact bibliographies which can be beneficial to authors and readers, and in "proceeding" format which is more detailed and complete.

Open Access
Creative Commons LicenseCopyright owned by the author(s) under the term of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.