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tions is illustrated. The scaling for negative particle production in Au+Au collisions from BES-I

program at RHIC is demonstrated. The scaling variable z depends on the momentum fractions

of the colliding objects carried by the interacting constituents, and momentum fractions of the

produced objects in the scattered and recoil directions, which carries the inclusive particle and its

counterpart, respectively. Structures of the colliding objects and fragmentation processes in final

state are expressed by fractal dimensions. Medium produced in the collisions is described by a

specific heat. The scaling function ψ(z) reveals energy, angular, multiplicity, and flavor indepen-

dence. It has a power behavior at high z (high pT ). Based on entropy principle and z-scaling,

energy loss as a function of the collision energy, centrality and transverse momentum of inclusive

particle is estimated. New conservation law including fractal dimensions is found. Quantization

of fractal dimensions is discussed.
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1. z-Scaling

One of the behavior related to the self-similarity and fractality of hadron interactions is man-

ifested by the z-scaling of inclusive particle production [1]-[4]. The scaling variable z = z0 ·Ω−1

is proportional to the quantity z0 =
√

s⊥/[(dNch/dη |0)c
mN ], where

√
s⊥ is the transverse kinetic

energy of a selected binary sub-process responsible for production of the inclusive particle with

mass ma and its partner (antiparticle) with mass mb. The multiplicity density dNch/dη |0 of charged

particles in the central interaction region, the nucleon mass mN , and the parameter c, interpreted as

a "specific heat" of the produced medium, completely determine the value of z0. The quantity Ω is

the maximal relative number of parton configurations containing binary sub-processes defined by

the momentum fractions x1 and x2 of colliding hadrons (nuclei), and by the momentum fractions

ya and yb of objects created directly in these sub-processes, which carry the inclusive particle and

its counterpart, respectively. The relative number of the configurations is given by the function

Ω = (1− x1)
δ1(1− x2)

δ2(1− ya)
εa(1− yb)

εb , where δ1 and δ2 are fractal dimensions of the collid-

ing objects, and εa and εb are fractal dimensions of the fragmentation processes in the scattered

and recoil direction, respectively. The selected binary sub-process is defined by the maximum of

Ω(x1,x2,ya,yb) with the kinematic constraint (x1P1 + x2P2 − p/ya)
2 = (x1M1 + x2M2 +mb/yb)

2,

where P1, P2 and M1, M2 are 4-momenta and masses of the colliding objects, p is 4-momentum of

the inclusive particle and mb is mass of its counterpart, respectively. The function Ω−1 represents

a resolution at which a sub-process defined by the fractions x1,x2,ya,yb can be singled out of the

inclusive reaction. The scaling variable z has property of a fractal measure. It grows in a power-like

manner with the increasing resolution Ω−1. The scaling function [2]

ψ(z) =
π

(dN/dη) σin

J−1E
d3σ

d p3
(1.1)

is expressed in terms of the measurable quantities and Jacobian {p2
T ,y}/ {z,η}. The scale trans-

formation z → αF z, ψ → α−1
F ψ is used for comparison of ψ(z) for different hadron species (F).

2. Self-similarity of hadron production in p+ p collisions

The main properties of z-presentation of the inclusive differential cross sections of particles

produced in proton-(anti)proton collisions are the energy, angular, and multiplicity independence

of the scaling function ψ(z) for different types of hadrons, direct photons and jets, confirmed

by numerous data obtained at U70, ISR, Spp̄S, Tevatron, RHIC and LHC. Figure 1(a) shows z-

presentation [1] of the spectra of π−,K−, p̄, and Λ′s produced in p+ p collisions at the energies√
s = 19− 200 GeV and θcms = 30 − 900. The z-scaling was obtained for δ1 = δ2 ≡ δ and εa =

εb ≡ εF . The energy and angular independence of ψ(z) was found for c = 0.25, δ = 0.5 and for the

stated values of εF and αF . Figure 1(b) shows pT -dependence of ya for π−, K− mesons and anti-

protons at the energy
√

s = 19,53,200 GeV and θcms = 900. All curves demonstrate a growth with

pT . It means that the relative energy dissipation ∆Eq/Eq = (1− ya) associated with the production

of a high-pT particle is smaller than for the inclusive process at lower transverse momenta. The

decrease of ya with the increasing
√

s corresponds to more energy dissipation at higher energies.

The slight decrease of ya with the mass of the inclusive particle means greater energy dissipation

in the production of heavier hadrons compared to lighter ones.
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(a) (b)

Figure 1: (a) The inclusive spectra of π−, K−, p̄, and Λ hadrons produced in p + p collisions in z-

presentation [1]. (b) The pT dependence of the momentum fraction ya for π−,K−, and p̄ produced in

p+ p collisions at
√

s = 19,53, and 200 GeV in the central rapidity region.

The flavor independence of ψ(z) for K0
S ,K

−,K∗0,φ mesons and Λ,Λ∗,Σ∗,Ξ,Ω hyperons mea-

sured by the STAR and PHENIX Collaborations in p+ p collisions was studied in [2]. The z-scaling

of the strange hadrons was confirmed for the model parameters which correspond to larger energy

losses than for pions. The energy loss was found to be larger for strange baryons than for strange

mesons. The growth indicates increasing tendency with larger number of strange valence quarks

inside the strange baryon, (∆E/E)Ω > (∆E/E)Ξ− > (∆E/E)Λ ≃ (∆E/E)Λ∗ ≃ (∆E/E)Σ∗ .

The flavor independence of ψ(z) was tested also for the top quark [4]. The z-presentation of

the spectra of top quark obtained in p+ p collisions at the LHC energies
√

s = 7,8, and 13 TeV

was compared with data on the top-quark production obtained by the DØ Collaboration at
√

s =

1.96 TeV. The same values of δ = 0.5 and c = 0.25 were used as for other hadrons. We have set

εtop = 0, as negligible energy loss is assumed in the elementary tt̄ production process. It was shown

that the LHC and Tevatron data on inclusive spectra of top quark support the flavor independence

of ψ(z) over the interval of z = 0.01−8 for αtop ≃ 0.0045.

We analyzed [4] data on inclusive cross sections of jet production in p+ p collisions at the

LHC energies
√

s = 2760,7000, and 8000 GeV in the framework of z-scaling. The results were

compared with z-presentation of jet spectra at the energies
√

s = 630,1800,1960 GeV. The data

obtained at the LHC confirm results of the analysis [5] of jet spectra measured by the DØ and CDF

Collaborations in p̄+ p collisions with parameters c = 1, δ = 1, and ε jet = 0. The scaling function

can be described by a power law ψ(z)∼ z−β over a wide range of z = 60−20000.

3. Self-similarity of negative hadron production in Au+Au collisions

We extended the applicability of the self-similarity principle to the description of hadron pro-

duction in nucleus-nucleus collisions. The self-similarity concerns fractal structure of the collid-

ing objects, interaction of their constituents and fractal character of fragmentation processes in

the final state. This physical principle is assumed to be valid also in the high-density and high-

temperature phase in which quark and gluon degrees of freedom dominate. Figure 2(a) shows the

3
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(a) (b)

Figure 2: (a) The scaling function ψ(z) and (b) the momentum fraction ya in dependence on pT for negative

hadrons produced in (0−5)% central Au+Au collisions at
√

sNN = 7.7, 11.5, 19.6, 27, 39, 62.4 and 200 GeV

[3]. The symbols correspond to experimental data [6] measured by the STAR Collaboration at RHIC.

function ψ(z) for negative hadrons [3] produced in (0−5)% central Au+ Au collisions at different√
sNN = 7.7− 200 GeV. The symbols correspond to spectra [6] measured by the STAR Collab-

oration at the pseudorapidity |η | < 0.5. The z-presentation of the spectra demonstrates energy

independence of ψ(z) over the analyzed kinematic range. The symbols nearly coincide with the

solid curve depicting z-scaling of h− particles produced in p+ p collisions. The same energy

independence of ψ(z) is valid [3] for different centrality classes of Au+Au collisions.

The scaling was obtained for εAuAu = ε0(2dNAuAu
neg /dη)+ εpp with a suitable choice of ε0 and

for the constant values of the model parameters cAuAu = 0.11, δA = Aδ , δ = 0.5, and εpp = 0.2

at
√

sNN & 19.6 GeV. The parameter ε0 shows [3] a logarithmic increase with
√

sNN . It reflects

the growing suppression of hadron yields in the central collisions of heavy nuclei. The increase of

εAuAu with produced multiplicity NAA
ch ≃ 2NAA

neg is connected with a decrease of ya representing larger

energy loss at higher energies and centralities. Figure 2(b) shows the dependence of the fraction

ya on pT for h− hadrons produced in (0−5)% central Au+Au collisions for different energies. A

growth of ya with pT and its decrease with
√

sNN correspond to the diminishing of relative energy

loss at high transverse momentum and its increase at higher collision energies.

4. z-Scaling and maximum entropy principle

The parameters used in the z-scaling scheme can be interpreted in terms of thermodynamic

quantities (entropy, specific heat, etc.) [1]. The scaling variable is proportional to the ratio of

the energy
√

s⊥ and the maximal value of W (x1,x2,ya,yb) = (dNch/dη |0)c ·Ω(x1,x2,ya,yb), con-

strained by a kinematic condition. The function W is proportional to the number of all parton and

hadron configurations of the colliding system which contain the constituent configuration defined

by particular values of the momentum fractions x1, x2, ya and yb. The absolute number of the con-

figurations, WS =W ·W0, is given up to a constant W0. We write the entropy of the configurations

4
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as follows

S = c · ln(dNch/dη |0)+ ln(1− x1)
δ1(1− x2)

δ2(1− ya)
εa(1− yb)

εb + lnW0. (4.1)

The multiplicity density characterizes a "temperature" and c "specific heat" of the produced matter.

The second term in (4.1) depends on the volume in the space of the momentum fractions.

4.1 Conservation of fractal cumulativity

There exists a scale dependent quantity characterizing hadron interactions at a constituent level

which is conserved. The conservation law reflects a symmetry of transformation of one fractal

structure into another one at all scales. The statement is based on maximization of the entropy

(4.1) with a kinematic constraint. It gives specific dependences of the momentum fractions on the

kinematics of the inclusive reaction. The momentum fractions satisfy the equality [7]

δ1
x1

1− x1
+δ2

x2

1− x2
= εa

ya

1− ya

+ εb

yb

1− yb

. (4.2)

This equation represents a conservation law for the quantity C(D,ζ ) = D · g(ζ ), where D means

fractal dimension, g(ζ ) = ζ/(1−ζ ), and ζ is the corresponding momentum fraction. The con-

servation law holds for any inclusive reaction with arbitrary momenta P1,P2 and p of the colliding

and inclusive particles. We name the quantity C(D,ζ ) as the "fractal cumulativity" of a fractal-like

structure with the dimension D carried by its constituent with the momentum fraction ζ . The con-

servation law is formulated as follows: The fractal cumulativity before a constituent interaction is

equal to that after the constituent interaction for any binary sub-process,

in

∑
i

C(Di,ζi) =
out

∑
j

C(D j,ζ j). (4.3)

The quantity C(D,ζ ) characterizes property of a fractal-like object or a fractal-like process with

the dimension D to form a structural aggregate with certain degree of local compactness, which

carries its momentum fraction ζ .

4.2 Quantization of fractal dimensions

The fractal character of hadron structure and fragmentation processes manifests itself most

prominently near the kinematic limit (x1,x2,ya,yb)→ 1. In this region, the momentum dependent

part of the entropy (4.1) can be written [7] in the form Sϒ − SΓ, where Sϒ depends on momenta

and masses, and SΓ = (δ1+δ2+ε1+ε2) ln(δ1+δ2+ε1+ε2)− δ1 lnδ1 − δ2 lnδ2 − εa lnεa − εb lnεb

depends solely on fractal dimensions. It allows us to derive physical consequences provided the

fractal dimensions are expressed as integer multiples δ1 = nδ1
·d, δ2 = nδ2

·d, εa = nεa
·d, εb = nεb

·d
of the same constant d. Based on the quantization of fractal dimensions, the entropy SΓ can be

interpreted within a statistical ensemble of the interacting fractal configurations as follows. The

statistical ensemble is considered as a large collection of nδ1
fractals with random configurations but

with the same fractal dimension δ1, together with an analogous set of nδ2
interacting fractals with

the fractal dimension δ2, which are combined via binary sub-processes with the collection of nεa

5
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fractals with random configurations but with the same fractal dimension εa, and the corresponding

set of nεb
fractals with the fractal dimension εb. The entropy SΓ can be rewritten into the form

SΓ = d · ln (nδ1
+nδ2

+nεa
+nεb

)!

nδ1
! ·nδ2

! ·nεa
! ·nεb

!
. (4.4)

According to statistical physics, this gives us possibility to interpret the entropy SΓ, expressed in

units of the dimensional quantum d, as the logarithm of the number of different ways, in which

the fractal dimensions of the interacting fractal structures can be composed from the identical

dimensional quanta, each of the size d.

The quantization of fractal dimensions, D = nD · d, is connected with quantum character of

the fractal cumulativity. This can be written as C(D,ζ ) = nC ·d, where nC(nD,ζ ) = nD ·ζ/(1−ζ )

represents the number of quanta of the fractal cumulativity expressed in units of the dimensional

quantum d. The quantum character of the fractal dimensions has profound impact on the physical

content of the conservation law for fractal cumulativity. According to (4.2), the number of cumula-

tivity quanta is conserved at any resolution given by the momenta P1,P2 and p of the colliding and

inclusive particles. The conservation law can be formulated as follows: The number of quanta of

fractal cumulativity before a constituent interaction is equal to that after the constituent interaction

for any binary sub-process,
in

∑
i

nC(nDi
,ζi) =

out

∑
j

nC(nD j
,ζ j). (4.5)

The quantization of the dimension D and the cumulativity C(D,ζ ) is based on the assumptions of

the fractal self-similarity of internal hadron structure, fractal nature of fragmentation process, and

locality of hadron interactions at a constituent level up to the kinematic limit.

5. Conclusions

The z-scaling is a specific feature of particle production reflecting the self-similarity, locality,

and fractality of hadron interactions at a constituent level. The analysis of the STAR BES-I data

indicates validity of the z-scaling for negative hadrons produced in Au+Au system. Using the

principle of maximum entropy, the variable z reflects the conservation of the fractal cumulativity,

quantization of the fractal dimensions, and conservation of the number of cumulativity quanta [8].
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