

PoS

Monte Carlo simulations of Upsilon meson production

Jaroslav Bielcik, Jakub Ceska,* Leszek Kosarzewski and Miroslav Myska

Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Brehova 7, 115 19 Praha 1, Czech Republic

E-mail: ceskajak@fjfi.cvut.cz

 Υ meson production dependence on charged particle multiplicity involves the interplay between soft and hard QCD processes. Normalised multiplicity dependence is a meaningful tool for understanding the particle production mechanisms. The observed strong increase may be explained by multi-parton interactions, string percolation or color glass condensate saturation effects. This paper presents Monte Carlo simulations of Υ meson production in proton-proton collisions at $\sqrt{s} = 500$ GeV with PYTHIA and Herwig generators. The aim of the simulations is to explore the dependence of normalised Υ meson yield on normalised event multiplicity. Herwig with $k_{\perp} > 4$ GeV/c shows a linear dependence of $N_{\Upsilon}/\langle N_{\Upsilon} \rangle$ vs. $N_{ch}/\langle N_{ch} \rangle$ for Upsilon $p_{T} > 0$ GeV/c, while both PYTHIA 8 and Herwig with $k_{\perp} > 20$ GeV/c show a stronger than linear dependence.

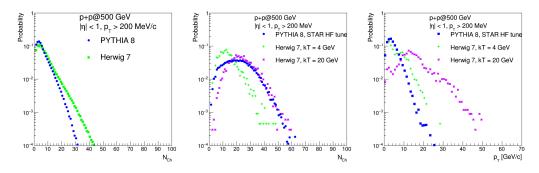
40th International Conference on High Energy physics - ICHEP2020 July 28 - August 6, 2020 Prague, Czech Republic (virtual meeting)

*Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).

1. Introduction

This work focuses on PYTHIA and Herwig simulations of Υ production vs. charged particle multiplicity (N_{ch}) in pp collisions at $\sqrt{s} = 500$ GeV. Normalised multiplicity dependence is a meaningful tool for understanding the particle production mechanisms and the interplay between soft and hard QCD processes. Recent experimental results show stronger than linear increase [1, 2]. This may be explained by multi-partion interactions, string percolation or color glass condensate saturation effects.


The experimental observable $N_{\Upsilon}/\langle N_{\Upsilon} \rangle$ is calculated as $N_{\Upsilon}/\langle N_{\Upsilon} \rangle = (N_{\rm MB}/N_{\rm MB}^{\rm bin})(N_{\Upsilon}^{\rm bin}/N_{\Upsilon})$, where $N_{\rm ch}/\langle N_{\rm ch} \rangle$ is the self-normalised particle multiplicity, N_{Υ} ($N_{\rm MB}$) is the total number of events containing Υ meson (minimum bias events) and $N_{\Upsilon}^{\rm bin}$ ($N_{\rm MB}^{\rm bin}$) is the number of Υ (minimum bias) events in the corresponding multiplicity bin.

2. Simulation

The simulation consists of two parts: minimum bias and Υ production. For minimum bias events non-single-diffractive soft QCD events were chosen. Criteria for particle selection are: $|\eta| < 1$, $p_T > 0.2$ GeV/c (STAR cuts), stable particles ($\tau > 10$ mm/c to reject weak decay contribution). Only directly produced $\Upsilon(1S)$ states within $p_T > 0$ or 4 GeV/c in electron decay channel were selected. This study also includes comparison to STAR preliminary data [3].

The Monte Carlo generators used in this study are PYTHIA 8.240 [4] with STAR HF tune and Herwig 7.2.0 [5, 6]. The main features of PYTHIA include p_T ordered showers, Lund string hadronisation model and direct Υ production (dedicated matrix elements for Bottomonia). Herwig's main features are angular ordered showers, cluster hadronisation and Υ production during hadronisation phase ($b\bar{b}$ matrix element). The results from Herwig depend on b-parton k_{\perp} cut (4 or 20 GeV/c) - the value of the k_{\perp} cut influences the N_{ch} and p_T spectra.

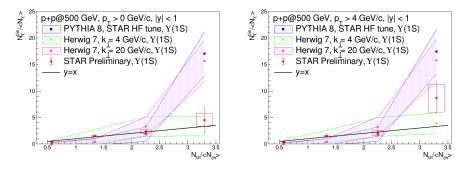

The multiplicity and p_T distributions can be seen in Fig. 1. Both PYTHIA and Herwig minimum bias spectra describe real data reasonably well. For Υ containing events, Herwig with $k_{\perp} > 4$ GeV/c is in closest agreement in terms of multiplicity and PYTHIA in terms of p_T distributions [3].

Figure 1: Charged particle multiplicity distributions for MB (left) and $\Upsilon(1S)$ containing (middle) events and $p_{\rm T}$ distributions for Υ containing events (right).

3. Results and Conclusion

The results of both Herwig and PYTHIA simulation are compared to STAR preliminary data in Fig. 2.

Figure 2: Normalised $\Upsilon(1S)$ yield dependence on normalised multiplicity. The PYTHIA simulations for direct $\Upsilon(1S)$ and Herwig simulations are compared to STAR preliminary data [3] for p_{T} -integrated (left) and $p_{T} > 4$ GeV/c (right).

STAR Υ data with $p_T > 0$ GeV/c are better described by Herwig with $k_{\perp} > 4$ GeV/c, which is consistent with linear dependence. For $p_T > 4$ GeV/c, the STAR data indicate a stronger than linear rise, which is qualitatively reproduced by PYTHIA 8 and Herwig with $k_{\perp} > 20$ GeV/c. It may indicate that Upsilons are produced in multiple parton interactions [2]. However, higher precision measurement as well as dedicated Monte Carlo tunes are needed for a deeper insight.

Acknowledgements

The work was supported from the project LTT18002 of the Ministry of Education, Youth, and Sport of the Czech Republic and from European Regional Development Fund-Project "Center of Advanced Applied Science" No. CZ.02.1.01/0.0/0.0/16-019/0000778.

References

- [1] J. Adam [STAR], Phys. Lett. B 786 (2018), 87-93
- [2] J. Adam et al. [ALICE], JHEP 09 (2015), 148
- [3] L. Kosarzewski [STAR], J. Phys.: Conf. Ser. 1667 (2020), 012022
- [4] T. Sjöstrand, S. Mrenna and P. Skands, JHEP05 (2006) 026, Comput. Phys. Comm. 178 (2008) 852
- [5] M. Bähr et al., Eur. Phys. J. C 58 (2008), 639
- [6] J. Bellm et al., Eur. Phys. J. C 76 no.4 (2016), 196