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1. Introduction

The 331 Model [1–6] is an extension of the Standard Model (SM) where the non-abelian gauge
group SU (2) of the electroweak symmetry is promoted to an SU (3). This assumption redefines
the SM hypercharge as Y = βQT

8 + XI. When βQ, which is a free parameter of the model, is not
specified, the setup is called “general 331 Model”. Concerning its particle spectrum, any realisation
of the 331 Model is accompanied by a rich variety of beyond-the-SM (BSM) particles that allows
for heavy and potentially exotic states. We present the study of the theoretical constraint on the
scalar potential of the 331 Model. Specifically, we derive the necessary and sufficient conditions
for its boundedness-from-below (BFB), we give the analytic expressions of the eigenvalues of the
scattering matrix related to perturbative-unitarity and we provide also the analytic expression of the
potential’s parameter in terms of the physical masses of the scalars.

2. The scalar sector of the general 331 Model

The general 331 Model represents a class of SM extensions containing the enlarged gauge group
SU (3)c × SU (3)L ×U (1)X . Several specific versions can be obtained by a particular choice of the
βQ parameter. In the general 331 Model, the electroweak symmetry breaking is realised by scalars
accommodated within three triplets of SU (3)L

χ =
*..
,

χA

χB

χ0

+//
-
, ρ =

*..
,

ρ+

ρ0

ρ−B

+//
-
, η =

*..
,

η0

η−

η−A

+//
-

(1)

where each triplet belongs to (1, 3, X ) with

Xχ = βQ/
√

3, Xρ = 1/2 − βQ/(2
√

3), Xη = −1/2 − βQ/(2
√

3). (2)

In addition to neutral and singly charged states, there are fields with charge

QA =
1
2
+

√
3

2
βQ , QB = −

1
2
+

√
3

2
βQ . (3)

The scalar potential reads

V = m2
1 ρ
∗ρ + m2

2 η
∗η + m2

3 χ
∗ χ +

√
2 fρηχ ρ η χ

+ λ1(ρ∗ρ)2 + λ2(η∗η)2 + λ3( χ∗ χ)2

+ λ12ρ
∗ρ η∗η + λ13ρ

∗ρ χ∗ χ + λ23η
∗η χ∗ χ

+ ζ12ρ
∗η η∗ρ + ζ13ρ

∗ χ χ∗ρ + ζ23η
∗ χ χ∗η, (4)

To derive the theoretical constraint on the scalar potential in general one has to analyse the behaviour
of the highest powers of the fields, i.e. the properties of the quartic couplings of the ultraviolet-
complete theory. For this purpose, it is convenient to parameterise a triplet in the following form:

Φi =
√

rieiγi
*..
,

sin ai cos bi
ei βi sin ai sin bi

ei αi cos ai

+//
-
, i = 1, 2, 3, (5)
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where the fields are complex numbers, ai, bi, βi, γi and αi are angular parameters, and ri is the
radial part of the field. For the sake of convenience, the following quantity is introduced:

τi j =
(
Φ
†

iΦi

) (
Φ
†

jΦj

)
−

(
Φ
†

iΦj

) (
Φ
†

jΦi

)
, (6)

where the non-negativity of τi j is ensured by the Cauchy–Schwarz inequality. The quartic part of
the scalar potential can be written in terms of a radial and an angular block:

V (4) = VR + ζ
′
12τ12 + ζ

′
13τ13 + ζ

′
23τ23 = VR + VA, (7)

where the ζ parameter were conveniently traded with ζ ′i j = −ζi j and the radial part reads

VR = λ1(ρ∗ρ)2 + λ2(η∗η)2 + λ3( χ∗ χ)2

+ λ ′12ρ
∗ρ η∗η + λ ′13ρ

∗ρ χ∗ χ + λ ′23η
∗η χ∗ χ, (8)

with λ ′i j = λi j + ζi j .

3. Boundedness from below

We present the results of the BFB analysis detailed in [7]. The presence of the angular part of
the scalar potential is an essential point of the analysis. For this reason the scenario with VA , 0
requires a dedicated focus. The BFB of the radial part of the scalar potential is obtained by imposing
the co-positivity constraints [8–10] on the matrix Qi j , defined by

VR ≡ Qi jrir j . (9)

This is the set of necessary and sufficient conditions for the BFB of the potential for the case
ζ ′12 = ζ

′
13 = ζ

′
23 = 0. A good strategy to get rid of the angular information of VA is to search for

an “angularly minimised” scalar potential with radial dependence only. In applying this procedure
one has to consider separately the case where at least one of the ζ ′ is zero and where all the ζ ′ are
different from zero. In the former case the BFB conditions call for co-positivity constraints applied
on the new matrices Q̃k defined by

VR +min(VA)Tk = Q̃i j
k

rir j, k = 1, . . . , 4. (10)

with the “trivial” minima of VA given by

min(VA)T1 = ζ
′
12 r1r2 + ζ

′
23 r2r3, (11)

min(VA)T2 = ζ
′
13 r1r3 + ζ

′
23 r2r3, (12)

min(VA)T3 = ζ
′
12 r1r2 + ζ

′
13 r1r3, (13)

min(VA)T4 = ζ
′
12 r1r2 + ζ

′
13 r1r3 + ζ

′
23 r2r3. (14)

In the latter case the matrix Q̂i j defined by

VR +min(VA)NT = Q̂i jrir j, (15)

is also required to fulfil the co-positivity criterion, once the transformation described in [10] is
applied. In this case the “non-trivial” minimum of the angular part is

min(VA)NT =
ζ ′12ζ

′
13ζ
′
23

4

(
r1
ζ ′23
+

r2
ζ ′13
+

r3
ζ ′12

)2
. (16)
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4. Perturbative Unitarity

The methodology to obtain perturbative unitarity constraints on the SM was described for the first
time in [11]: all the possible 2→ 2 processes with a given total charge Q should be considered and
the corresponding amplitudes arranged in a scattering matrix. The perturbative unitarity condition
imposes then that the real part of the largest eigenvalue of this matrix should not exceed 1/2. In the
general 331 Model, the scalars of Eq. 1 can have charges 0, ±1, ±QA and ±QB, where QA and QB

take different values depending on the specific realisation of the 331 Model, i.e. of the value of βQ
(see Eq. 3). It follows that there are 13 scattering matrices, corresponding to the initial total charge
of the 2→ 2 processes

Q = 0, 1, 2, QA, QB, QA + 1, QB + 1, QA − 1, QB − 1,
QA +QB, QA −QB, 2QA, 2QB . (17)

The final condition for the perturbative unitarity is then

|a| ≤
1
2

(18)

where a identifies all eigenvalues. Their form is shown in the following list

a =
{ λi
8π
,
λi j

16π
,
λi j ± ζi j

16π
,
λi j + 2ζi j

16π
,
λi + λ j ±

√
(λi − λ j )2 + ζ2

i j

16π
,

P3
1 (λm, λmn, ζmn)

32π
,
P3

2 (λm, λmn, ζmn)
32π

}
(19)

where P3
1,2 are the solutions of third-grade polynomials given by

3∑
i, j,k=1

[
x3

27
−

4
9
λix2 +

(
2
(
4λiλ j − ζ

2
i j

)
x −

8
3
(
ζi jζikζ jk − 3λiζ2

jk

+4λiλ jλk
)) (

εi jk
)2]

, (20)

3∑
i, j,k=1

[
x3

27
−

16
9
λix2 +

(
2(64λiλ j − (3λi j + ζi j )2)x

−
8
3
(
ζikζ jk (9λi j + ζi j ) + 27λi jλik (λ jk + ζ jk )

+4λi
(
64λ jλk − 3(3λ jk + ζ jk )2))) (

εi jk
)2]

, (21)

with λ ji = λi j , ζ ji = ζi j .

5. Perturbativity

Requesting perturbative unitarity to be respected is necessary but not sufficient to guarantee the
correct perturbative behaviour of the model. Perturbativity of the couplings should also be enforced,
setting further theoretical constraints on the parameters of the model. These constraints turn out
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to be especially effective when the couplings of the scalar potential are recast in terms of physical
parameters, according to the diagonalisation procedure described in [7]. We canwrite schematically

λ = Fλ(mhi,ma,mh±Q, vj, αk) (22)
fρηχ = Ffρηχ (mhi,ma,mh±Q, vj, αk) (23)

ζ = Fζ (mhi,ma,mh±Q, vj, αk) (24)

Remarkably, for a mass spectrum that lives above the electroweak VEV, Eqs. 24 calls for a certain
degree of degeneracy between m2

h±1
and m2

a1
. Beyond that, the set of Eqs. 22 does not provide any

general take-home messages. Even if specific benchmark choices could lead to more manageable
formulae, a numerical approach is always required to investigate generic scenarios.

6. Conclusions

We present the analysis of the theoretical constraint on the scalar potential of the 331 Model. We
derive the necessary and sufficient conditions for boundedness-from-below, the analytic constraint
of perturbativity as well as perturbative unitarity. The Lagrangian parameters were expressed
in terms of the physical parameters, namely masses and mixing angles, by means of a systematic
diagonalisation of all the mass matrices of the scalar sector. Perturbativity and perturbative unitarity
were then discussed in this spirit and maintaining a consistent general approach.
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