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1. Introduction

In the last few decades, the on-shell amplitude methods have undergone a considerable devel-
opment, andmany new and surprising results have been obtained (for a recent review and a complete
list of references, see [1]). These developments concern not only the originally considered (SUSY)
gauge theories and gravity, but also the class of non-renormalizable effective field theories (EFTs).
Lagrangians of EFTs are organized as infinite towers of vertices with increasing mass dimension,
and their form is fixed by the relevant symmetries. In some cases, the symmetry requirements are so
strong that the Lagrangian of the corresponding EFT is unique up to a finite number of free coupling
constants. This is typically the case of spontaneously broken symmetries, when the effective theory
describes the dynamics of the Goldstone bosons. In such a case, the (-matrix of the theory has a
peculiar IR behavior, which is expressed in terms of soft theorems for the scattering amplitudes. It
often appears that these soft theorems can be taken as an alternative on-shell definition of the theory
itself [2] and can be used for the recursive reconstruction of the tree-level (-matrix [3]. Therefore,
the on-shell amplitude methods in conjunction with soft theorems provide us with a powerful tool
for exploration of the landscape of EFTs and for finding new EFTs with interesting properties.
This program, dubbed as the soft bootstrap, has been completed for the single flavor scalar EFTs
in [4], where the the classification of the exceptional theories with enhanced soft limits has been
performed. The case of SUSY EFTs has been explored by these methods in [5], and the systematic
studies of multi-flavor scalar theories have been initiated in [6].

In this contribution, we present our preliminary results illustrating the power and limitations
of the method in the case of the coupling a massless vector particle to a massless scalar with
Galileon power counting1. Physically, such an EFT might correspond to the coupling of the photon
to the modified gravity in the decoupling limit, where the only interacting degree of freedom is the
Galileon, or to the interaction of the vector and scalar degrees of freedom of the massive gravity
near the decoupling limit.

2. Bootstrap method

In this section, we describe briefly the application of the bootstrap method to the exploration
of the landscape of EFTs containing a massless scalar (sGal) and a massless vector (we call it the BI
photon in what follows). The sGal nature of the scalar means that tree amplitudesA should posses
an enhanced single scalar soft limit, i.e. A = O

(
?3) , where ? → 0 is the momentum of any scalar

leg. Similarly, the presence of the BI photon assumes for the amplitudes the properties similar to
the pure BI theory, namely the helicity conservation and some sort of a multichiral soft limit [8].

2.1 Method description

The idea of the bootstrap method is to start with some lowest-order seed amplitudes (which are
contact by construction), glue them together to ensure the right factorization, and then add some
contact terms with free constants. These are to be determined using some additional information, in
our case a certain set of soft limits. The whole process is then iterated as far as we can computatively
go to construct higher-order amplitudes. For an illustration of the first iteration, see Figure 1.

1This hypothetical theory was first mentioned in [5, 7].
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A = ⊗ +

Figure 1: First iteration of the bootstrap method, construction of a 6-point amplitude from seed ones.

2.2 Power counting parameter

Let us consider a tree amplitude A with mass dimension 3 and = external legs, composed of
vertices +8 with mass dimensions 38 and with =8 external legs. Then it holds

3 − 2 =
∑
8

(38 − 2), = − 2 =
∑
8

(=8 − 2). (1)

We define the power counting parameters rA and r8 for the amplitudeA and for the vertices +8 as

rA ≡
3 − 2
= − 2

, r8 ≡
38 − 2
=8 − 2

. (2)

It is self-evident that all the tree amplitudes of an EFT with vertices that all have the same parameter
r8 = r also have rA = r. We call such EFT single-r theory in what follows2. The question we are
trying to answer is whether there is a unique theory with the Galileon-like power counting r = 2
containing the sGal coupled to the BI photon.

2.3 Contact terms and seed amplitudes

Since we consider only the massless theories, we can employ the massless spinor-helicity
formalism. The principles of Lorentz invariance and locality imply that contact amplitudes are
polynomials in square and angle spinor brackets, and they are constrained by the power counting
and the little group scaling. In a single-r theory, the mass dimension 3 of any contact =-point
amplitude A should be 3 = r(= − 2) + 2. Also, the amplitude should scale as A → I2ℎ8A
whenever the 8-th leg (with helicity ℎ8) is scaled using |8] → I |8] and |8〉 → I−1 |8〉.

Let us now classify the seed amplitudes. Assuming the helicity conservation3 and the parity
conservation, there are three 4-point seed amplitudes possible4

A04(10, 20, 30, 40) = 204〈12〉[12]〈13〉[13]〈23〉[23]
A22(1+, 2−, 30, 40) = 222〈34〉[34] [1|3|2〉[1|4|2〉
A40(1+, 2+, 3−, 4−) = 240〈12〉[12]〈34〉2 [12]2.

(3)

The indices =W , =i inA=W=i (or in the free couplings 2=W=i ) denote the numbers of BI photons and
sGals, respectively. For instance, the first amplitude A04 corresponds to the scattering of zero BI
photons and four sGals (it is thus a pure sGal amplitude).

2Among single-r EFTs, there are distinguished theories such as the NLSM, DBI, BI, or Galileons.
3This means that the number of helicity-plus and helicity-minus BI photons is the same when we assume all the

particles as outgoing.
4Note that these amplitudes obey the sGal limit and also the multichiral soft limits in the sense of ref. [8].
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2.4 First iteration and 6-point amplitudes

The first iteration means to construct the 6-point amplitudes by gluing the 4-point seed vertices
and adding independent 6-point contact terms with unknown constants. The latter are to be
determined using soft limits. The amplitude A06 is a pure sGal amplitude, and it is well-known.
For the 6-point amplitude A24, we symbolically get

A24 = A22 ⊗0 A04 + A22 ⊗1 A22 +
a24∑
8=1

224,8ACT
24,8 , (4)

where “⊗ℎ” represents the gluing corresponding to an exchanged particle with the helicity5 ℎ and
the sum is over the a24 = 29 independent 6-point contact counterterms. We have found that just
demanding the O

(
?3) sGal soft limit for any scalar leg is enough to fix all the constants 224,8 and

also one of the two 4-point constants 204 and 222. The remaining unfixed 4-point constant represents
the overall normalization of the amplitude. Similarly, for the amplitude A42, we get

A42 = A22 ⊗0 A22 + A22 ⊗1 A40 +
a42∑
8=1

242,8ACT
42,8 , (5)

where a42 = 42. In this case, all 242,8s and one of the two 4-point constants 240 and 222 can be fixed
via imposing the multichiral soft limit [8] for the BI photons6 in addition to the O

(
?3) sGal limit.

Finally, for the amplitude A60, we get a60 = 5 contact terms, and our procedure gives

A60 = A40 ⊗1 A40 +
a60∑
8=1

260,8ACT
60,8 . (6)

Since this amplitudes has no external scalars, we cannot use the sGal O
(
?3) limit. We have found

that requiring A60 = O
(
C2

)
behavior in the limit where two BI photons with the same helicity

become soft (i.e. a stronger requirement than in the previous case) is sufficient to fix all the 260,8s.

2.5 Higher iterations

The =-point amplitudes for = > 6 are iteratively constructed in a similar way, namely via gluing
the lower-point contact vertices, adding a linear combination of independent =-point contact terms
and then fixing asmany as possible of the free constants by soft theorems. The resulting construction
is schematically summarized in Figure 2. Using this approach, we have proven numerically that
A08, A26, and A44 are uniquely fixed7 just by the sGal soft limit, and A62 is not fixed by the sGal
soft limit alone. Also, it appears that the amplitude A80 cannot be uniquely fixed by any type of
multichiral soft limit. This results seem to be in accord with the soft BCFW recursion. Indeed,
assuming that the theory exists, the amplitudes A=W=i satisfying =W < =i + 2 could be recursively
reconstructed using the soft BCFW recursion [3] based on the sGal soft limit alone provided all the
amplitudes with a smaller = = =W + =i are already fixed,8 and the amplitudes A=i+2,=i could be
reconstructed adding just one extra soft condition (e.g. some multichiral soft limit).

5In our symbolic formulas, adding helicity-conjugated graphs (i.e. those with opposite helicity assignments to the
external BI photon legs), which are present due to the helicity conservation, is implicit.

6That means requiring A42 = O(C) when all the same helicity BI photons become soft, ?±
8
= O(C) when C → 0.

7Up to an overall normalization.
8Cf. also a similar discussion in [7].
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Figure 2: Theweb of the amplitudes and the contact terms. We use the notation
a=W=i

A=W=i , whereA=W=i is either
the set of contact term, or the amplitude, and a=W=i is the number of independent contact terms contributing
to the amplitude A=W=i . Whenever two nodes of the web can be connected by an oriented path, the contact
terms corresponding to the starting point of the path contribute to the amplitude attached to the endpoint of
the path. Provided the theory exists, the green-colored amplitudes can be uniquely reconstructed recursively
from the sGal soft limit alone, the red-colored ones should be fixed by some additional requirement. The
orange-colored amplitudes A=i+2,=i could be reconstructed using just one such extra soft limit.

3. Lagrangian approach

On the Lagrangian level, the sufficient condition for the sGal soft limit is the invariance of the
action with respect to the generalized polynomial shift symmetry9 (here �UV = �VU, and �`` = 0)

Xi = −1
2
�UV

(
U2GUGV + mUimVi

)
, (7)

The building blocks [9] are the effective metric 6`a , the extrinsic curvatureKU`a , and the scalar f

6`a = [`a +
1
U2 m`mi · mmai, K`aU = − 1

U
m`mamUi, f =

1
2i

ln
det

(
[ + i

U
mmi

)
det

(
[ − i

U
mmi

) . (8)

Any theory with even-point amplitudes only obeying the sGal soft limit and with the power counting
r = 2 which couples the BI photon to the sGal has to include the following minimal Lagrangian

Lmin = LsGal [i] −
1
4
√
|6 |+0(f)�`U�aV6`a6UV, (9)

where LsGal [i] is the sGal Lagrangian, and +0(f) = +0(−f) is an arbitrary real function10. The
action based on Lmin is invariant with respect to (7), provided the BI photon field �` transforms as

X�` = −�UV
(
mUimV�` + �UmVm`i

)
. (10)

However, Lmin alone gives a vanishing seed amplitude A40 = 0, and the amplitude A42 does not
obey the multichiral soft limit. To reproduce the results of Sec. 2, it is thus necessary to add
also non-minimal invariants (starting from 4-photon terms) of the schematic form +1�

4K2 (12
independent terms), +2(DK)�4 (4 terms), +3(D�)2�2 (9 terms), +4(D�)�3K (10 terms), and
+5(D2�)�3 (5 terms), where D is the covariant derivative associated with the metric 6`a , and
+8 (f) = (−1)8+1+8 (−f) are arbitrary functions. The resulting Lagrangian has infinitely many free
couplings. Some combinations of them can be fixed by the multichiral soft limit applied to A42.

9Here U is the free parameter of the sGal Lagrangian, see [9, 10] for details and for explicit formulas.
10See also [7], where the special case +0 = 1 has been studied.
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4. Conclusion

We have presented the preliminary results of the application of the bootstrap method to the
construction of unique tree amplitudes for a parity-and-helicity-conserving theory where the sGal
is coupled to the BI photon. We have successfully fixed (up to one normalization constant) all the
6-point amplitudes by soft limits. Continuing to higher amplitudes, though some amplitudes are
fixed, we have not found any appropriate constraints to make all the 8-point amplitudes unique.
Also, a compatibility check of the first iteration with the second one has to be performed yet.

We also give an overview of a possible Lagrangian description of such a theory, based on
covariant building blocks. Apart from theminimal (2-photon) part whichmust be always present, we
have also performed a full classification of possible 4-photon non-minimal terms. The Lagrangian
then reproduces the bootstrap results up to 6-points. It also allows for generalizations with non-
vanishing odd-point amplitudes and violation of the helicity conservation.
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