PoS - Proceedings of Science
Volume 390 - 40th International Conference on High Energy physics (ICHEP2020) - Parallel: Formal Theory
Intrinsic quantum coherence in particle oscillations
A. Tureanu
Full text: pdf
Pre-published on: January 01, 2021
Published on:
Abstract
The quantum field theoretical description of coherence in the oscillations of particles, especially neutrinos, is a standing problem in particle physics. In this talk, several inconsistencies of the standard approach to particle oscillations will be explained, and how they are resolved in a process-independent manner, by a novel approach inspired by the Bardeen-Cooper-Schrieffer theory of superconductivity and the Nambu-Jona-Lasinio model. The formalism leads to corrections to the neutrino oscillation probability originally written by Pontecorvo and Gribov, however the standard probability is validated in the ultrarelativistic neutrino limit. The massive neutrino states are interpreted as quasiparticles on a vacuum condensate of "Cooper pairs" of massless flavour neutrinos. The newly defined oscillating particle states are for neutrino oscillations what the Klauder-Sudarshan-Glauber coherent states are for quantum optics.
How to cite

Metadata are provided both in "article" format (very similar to INSPIRE) as this helps creating very compact bibliographies which can be beneficial to authors and readers, and in "proceeding" format which is more detailed and complete.

Open Access
Creative Commons LicenseCopyright owned by the author(s) under the term of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.