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The recently deployed DeepTau algorithm for the discrimination of taus from light flavor quark or
gluon induced jets, electrons, or muons is an ideal example for the exploitation of modern deep
learning neural network techniques. With the current algorithm a suppression of misidentification
rates by factors of two and more have been achieved for the same identification efficiency for taus
compared to the MVA identification algorithms used for the LHC Run-1, leading to significant
performance gains for many tau related analyses. The algorithm and its performance will be

discussed.
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1. Introduction: tau physics

Tau leptons are the heaviest leptons in the standard model (SM) of particle physics. Their study
is crucial in several measurements: tests of electroweak interaction and lepton flavor universality,
study of the production [1] and CP properties [2] of the Higgs boson via its Yukawa coupling to
fermions, together with several searches for beyond standard model signatures [3]. This talk focuses
on the reconstruction of tau leptons in the Compact Muon Solenoid (CMS) experiment [4] at the
Large Hadron Collider (LHC) [5]. After an introduction on the properties of the tau lepton and its
experimental signatures, the algorithms deployed in CMS for the reconstruction of tau leptons will
be described. Particular focus will be given to the DeepTau neural network based algorithm used
to reduce the misidentification rate of jets and light leptons as hadronically decaying tau leptons.

2. The tau lepton

With a mass of m, = (1776.86 + 0.12) MeV [6] the tau lepton is the heaviest known lepton
and the only one which can decay both hadronically and leptonically. Its average lifetime is
T7 ~ (2.903 + 0.005) x 10713 s, which for a 7 lepton of 30 GeV corresponds to a decay length of:

Ae=cxTrxyB = (3% 10" mm/s) = (2.9 x 10713 s) * (30 GeV/1.78 GeV) =~ 1.5 mm

with ¢ speed of light and By = p/m, with momentum (p) and rest mass (m) written in natural units.
The innermost layer of the silicon tracker in CMS is at a distance of ~3 cm from the beamline. This
means that the fraction of 7 leptons produced close to the beam line (also referred to as prompt)
that decay after reaching the innermost layer of the detector is negligible. Tau leptons are therefore
reconstructed based on their decay products. Fig. 1 summarizes the main tau decay channels and
their corresponding measured branching fractions.
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Figure 1: Pie chart representing the tau decay channels with relative branching fractions.

Tau decays always involve at least one charged particle, traditionally referred to as prong. In
particular, leptonic decays are all classified as 1 prong decays, while hadronic decays are mostly
mediated by mesonic resonances leading to final states with 1 or 3 prongs. 5 prong decays are also
allowed and represent 0.1% of the total decays.
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3. Hadronically decaying tau lepton reconstruction

Hadronically decaying tau leptons (73,) appear in the detector as well collimated jets. Their
decay products are identified using the PF algorithm [7], and assigned to a tau decay by the Hadron-
plus-strip (HPS) algorithm [8]. A track in the inner tracker matching a deposit in the hadronic
calorimeter is assigned to a hadron by the PF and HPS algorithms, while electrons, positrons and
photons found in a region narrow in pseudorapidity (r7) and elongated in the azymuthal direction
(¢), i.e. matching a 7° decay signature, are assigned to a strip. If these objects are sufficiently close
to each other and their invariant mass matches the one corresponding to a tau decay channel, they
are assigned to a tau decay. Four decay channels are reconstructed by the HPS algorithm and their
signatures are shown in Fig. 2.
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Figure 2: Hadronic decay channels reconstructed by the HPS algorithm. Moving left to right the decay
channels are: 1 prong, 1 prong + n¥s, 3 prong and 3 prong + 7°.

Several objects can be misidentified as hadronically decaying tau leptons by the HPS algorithm:

* jets: a highly collimated quark or gluon jet can be mistaken for any tau decay,
* muons: can produce a signature similar to a 1 prong tau,

* electrons: can emit photons via bremsstrahlung radiation and mimic the p decay.

The misidentification rate by jets and light leptons is reduced by the use of a neural network
based algorithm: DeepTau [9].

4. DeepTau Identification

The DeepTau identification is based on a multiclass convolutional NN used to reduce the
misidentification of jets, muons and electrons as hadronically decaying taus. It takes as inputs low
and high level features associated to the 7;, candidate and produces 4 output scores, one for each
class: genuine taus (y.), jets (y;), muons (y), and electrons (y.). The basic structure of the NN is
shown in Fig. 4.

4.1 Input features

The low level features are the tracks and energy deposits of the tau decay products and other
PF candidates in the isolation cone, i.e. in the vicinity of the 75, candidate. The CMS detector
is divided in cells of 1 X ¢, and the properties of the leading PF candidate found in each cell are
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Figure 3: NN input grid. Figure 4: Structure of the DeepTau NN.

taken as inputs for the NN. A set of 21 X 21 cells arranged as a square around the leading tau decay
product direction of flight are defined with a granularity of X ¢ = 0.05 x 0.05, and overlap with
a set of 11 x 11 cells with a granularity of n X ¢ = 0.02 x 0.02 as shown in Fig. 3. The cells
with higher granularity are named inner cells, while the others are named outer cells. The two
granularities allow to study more precisely the topology of the event in the region closer to the
leading tau decay product, allowing for good discrimination between tau leptons and misidentified
leptons and jets, while keeping the number of features manageable from the computational point of
view. Other input features are referred to as high level as they are related to either the tau candidate,
like its transverse momenta, HPS-decay mode, 1, ¢ and other properties, or the recorded event in
its entirety like the average energy of the event. This results in a number of input features of the
order of 100 thousands (O(100k)).

4.2 Convolutional layers and training

Each group of input features! is pre-processed by 3 convolutional layers of window size 1 X 1.
The low level features are then further processed by convolutional layers of window size 3 X 3 as
shown in Fig. 4. All features are then concatenated and processed via 5 fully connected dense layers
leading to the four output nodes. The training is performed using the NAdam algorithm [10] with
O(1.5M) trainable parameters. Itis a supervised training which uses samples of simulated Drell-Yan
(DY) or high mass Z interactions for genuine hadronically decaying tau leptons and misidentified
objects, together with simulated processes like tt, W+Jets, and QCD multijet production to account
for different jet topologies.

4.3 Classifiers
From the output scores, three different classifiers can be derived:

Yt

P pi = ———
rmen Yzt Yobj.

with obj. = j,e,u. Fig. 5 shows the misidentification rate as a function of the efficiency for
the selection of genuine hadronically decaying tau leptons for the three classifiers. The DeepTau
classifiers are compared to the older MVA-based classifiers used in CMS before the deployment of
DeepTau. For the same efficiency for the selection of genuine hadronically decaying tau leptons,

Low level from the inner and outer cells separately, and high level features.
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the DeepTau classifiers present a noticeable reduction of the misidentification rate. For the against-
electron and muon classifiers, the misidentification rate is reduced by at least a factor 3, while the
against-jet classifier achieves a reduction of ~ 20%.
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Figure 5: Misidentification rate as a function of the efficiency for the selection of hadronically decaying
tau leptons. The top row shows the against-electron (left) and against-muon (right) classifiers validated on
Z — ee and Z — pupu samples, while the bottom row shows the against-jet classifiers validated on two
different jet topologies: tt (left) and W+Jets (right) [9].
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Figure 6: Visible mass distribution for 7,75 channel using on the left the old MVA-based classifiers and on
the right the DeepTau ones [9].
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5. Conclusions

The DeepTau NN based identification algorithm improves the efficiency in identifying genuine
hadronically decaying tau leptons by ~ 20% while reducing the misidentification rate from light
leptons and jets by ~ 23%. This already allowed several analyses to improve their sensitivities.
As an example, Fig. 6 shows the improvement in the reconstruction of di-tau events where a tau
lepton decays to a muon (7,) and the other decays hadronically. The visible mass distribution of the
7,7, pair obtained with the DeepTau classifiers shows a greater contribution from the DY — 7,7,
process and reduced contributions from other processes, compared to the distribution obtained with
the old MVA-based classifiers. Simulation agreement with data is maintained through the use of
correction scale factors of the order of ~ 10%.
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