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The CMS experiment makes use of a large variety of algorithms to identify the origin of particle
jets measured in the detector. Through the study of jet substructure properties, jets originating
from quarks, gluons, W/Z/Higgs bosons, top quarks and pileup interactions are identified and
categorized. We present new techniques based on machine learning approaches developed for the
analysis of the data collected during the LHC Run 2 that significantly surpass the performances
of classical taggers.
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1. Introduction

The reconstruction and identification of particle jets in the detector are crucial components in
many measurements and searches for new phenomena at the LHC. Identification algorithms are
developed which rise to the challenge of distinguishing different possible jet origins. In this article,
a focus is set on the jet production from hadronic decays of top quarks and heavy bosons at high
transverse momenta. In this kinematic regime, the decay products are Lorentz-boosted, become
collimated and are reconstructed with a single large-radius jet. In order to identify the origin of
those large-radius jets, substructure techniques are indispensable. A classical example of a powerful
substructure observable is the jet mass, which is defined as the invariant mass of the sum of all jet
constituents. It is sensitive to the mass of the original heavy object once all decay products are
reconstructed within the same jet. In order to suppress the Sudakov peak [1] in the jet mass of light
quarks and gluon jets, the soft drop algorithm [1, 2] is often applied in CMS analyses. With its help,
the mass spectrum of jets that include a heavy boson or top quark decay can better be distinguished
from gluon or light quark initiated jets. In addition, energy distribution measures can resolve the
internal structure of a jet and are used to distinguish the 3-prong decay of top quarks, the 2-prong
decays of W, Z and Higgs bosons and the 1-prong structure of jets originating from light quarks
and gluons. Taggers that make use of those properties are widely used and have become a standard
in CMS analyses. However, recent developments in machine learning approaches made it possible
to extract more information from substructure observables and the jet constituents itself and further
improve the categorization of jets.

All presented tagging algorithms rely on jets that are clustered from candidates that have
been identified by the particle flow algorithm [3]. A full description of the CMS detector and its
subsystems can be found in Ref. [4].

2. Jet substructure and machine learning

Machine learning is an optimal tool for the combination and extraction of features from various
jet substructure observables. The boosted event shape tagger (BEST) [5, 6] is based on substructure
observables such as the soft drop jet mass and b tagging information that are fed into a fully
connected neural network. In addition, the jet is Lorentz-transformed into its rest frame under
the assumption of the mass of the top quark, W, Z or Higgs boson. The angular distribution of
decay products is expected to be isotropic and the momenta balanced, if the correct boost into the
particle’s rest frame is applied. Observables that quantify the isotropic distribution and momentum
balance of different boost vectors are fed into the network. Within the neural network, a total of
59 quantities are combined and result in a classification of large-radius jets. The BEST algorithm
is capable of identifying multiple jet sources such as hadronic decays of heavy bosons or the top
quark. This approach outperforms classical tagging algorithms, which are based on only a few
substructure observables.

Since machine learning techniques are very suitable for the distillation of a vast amount of
information, algorithms are developed which not only combine jet quantities but properties of the
jet constituents itself. The DeepAK8 algorithm [5] is able to combine the properties of up to
100 jet constituents and 7 secondary vertices into its jet categorization. This enormous amount
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Figure 1: DeepAK8 discriminator distribution for the identification of jets originating from hadronic decays
of boosted top quarks. In the upper panel, data (markers) are compared to simulation (filled areas). The
lower panel shows the ratio and indicates the statistical (red) and total (blue) uncertainties as hatched areas.
Published in Ref. [9].

of information is processed in two separate networks that extract features of the constituents and
secondary vertices before being combined in one fully connected layer. With the DeepAK8
algorithm, not only the original particle of a decay can be identified but also decay modes can be
distinguished. Figure 1 shows the distribution of output values from the node which is used for the
separation between light quark and gluon jets and jets that originate from hadronic decays of boosted
top quarks. Events are selected that contain a single muon with pT > 55 GeV, at least one b tagged
jet and a large-radius jet, clustered with the anti-kT algorithm [7] that satisfies pT > 200 GeV. Data
are observed to behave very consistently with simulation.

The ParticleNet algorithm [8] is based on the same input list of observables as DeepAK8 but
uses a different network architecture. Here, a graphic neural network - namely particle clouds - can
identify two-particle correlations, which resolve the N-prong structure of a jet.

3. De-correlation from the jet mass

The jet mass is a key quantity in many taggers and its sensitivity to the jet origin is a central
feature. Also machine learning algorithms based on jet constituents are capable of extracting this
very observable. With this, jets that pass an identification requirement are more likely to have a
mass close to the expected value and the jet mass distribution is sculpt. This introduces difficulties
for many analyses that rely on a resonant mass peak in the signal with an otherwise smoothly falling
background. Thus, efforts have been made in order to create mass de-correlated tagging algorithms.
A mass de-correlated version of the DeepAK8 algorithm, referred to as DeepAK8-MD [5], has
been developed. It makes use of a second neural network that tries to extract and predict the jet
mass. The prediction is fed into the original network and a penalty term measuring the accurateness
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Figure 2: Soft drop jet mass distribution of jets passing the requirements of the nominal and mass de-
correlated versions of W tagging algorithms. The distributions are obtained in a dijet sample. Published in
Ref. [5].

is assigned. This prevents the network from constructing output values which are closely correlated
to the jet mass and a smooth jet mass distribution is obtained, as Figure 2 shows.

4. Expected performance of the algorithms

With all these aforementioned tagging techniques at hand, data analysts have powerful tools,
which directly affect and improve a variety of measurements and searches at the LHC. In order
to study, compare and understand the multitude of identification algorithms, they are centrally
validated within the CMS Collaboration. The measurement of tagging efficiencies is performed
using a sample of top quark-antiquark pair events in the lepton+jets channel, where the lepton acts
as a tag. Figure 3 shows scans of the background efficiency as a function of signal efficiency in
terms of a receiver operating characteristic (ROC) curve for a variety of top quark identification
algorithms measured in simulation. Over the full range, machine learning techniques show a
substantial gain in signal efficiency at the same background efficiency and outperform all classical
tagging algorithms (mSD + τ32, mSD + τ32 + b and HOTVR). In addition, it is shown that ParticleNet
achieves an increased tagging efficiency in comparison to DeepAK8, despite relying on the same
information. This example shows the potential of new developments in machine learning to not
only process large numbers of observables but also extract features in a suitable way.

5. Validation in data

By measuring the corresponding efficiencies in data and comparing to those in simulation,
correction factors are derived. Those correction factors account for observed differences in jet
substructure distributions, which are caused by mismodeling in simulation. Thus, the measurement
of tagging efficiencies is not only crucial for all analyses that rely on these tagging techniques but
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Figure 3: Background efficiency as a function of signal efficiency for a variety of top tagging algorithms.
The values are estimated from simulation in a specific kinematic regime. Published in Refs. [5] (left)
and [8] (right).
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Figure 4: Correction factors for the DeepAK8 algorithm in the top tagging mode. The factors are separately
derived in the 2016, 2017 and 2018 data taking periods of LHC’s Run 2 and four different working points in
bins of jet momentum. Published in Ref. [9].

also provide valuable information for our understanding of jet substructure modeling. Figure 4
shows correction factors, which are estimated for the DeepAK8 algorithm separately for all three
data taking periods of LHC’s Run 2 and four working points of the tagger. Although machine
learning techniques combine a vast amount of substructure information in one output value, all
factors are observed to be consistent with unity. Similarly, correction factors are derived for other
jet identification algorithms in Refs. [5, 9] and show a similar behavior.
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6. Summary

The identification of a jet’s origin is crucial formany analyses at the LHC. Jet tagging techniques
are evolving towards elaborate machine learning approaches which increase the signal efficiency
significantly. Data-to-simulation factors are measured in order to correct for deviations in the
tagging efficiencies. In addition to dedicated substructure measurements [10, 11], these studies are
crucial not only for the application of identification techniques but our detailed understanding of jet
substructure and its modeling in simulation.
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