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The identification of jets originating from heavy-flavour quarks (b, c) is central to the LHC
physics program. High-performance flavour tagging is necessary both in precise Standard Model
measurements and in searches for new physics. To achieve this, distinct characteristics of heavy-
flavour decays are exploited, such as the presence of secondary vertices and displaced particles.
This requires an accurate picture of the charged particle activity within jets, which is obtained
performing efficient and precise track reconstruction in theATLAS InnerDetector. After providing
details on the role of track reconstruction in b-tagging, we present the latest heavy-flavour jet
tagging algorithms developed by the ATLAS collaboration. In addition we report, for both track
reconstruction and flavour tagging tasks, recent performance results as expected in simulation and
as measured in collision data.
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1. Introduction

Flavour tagging is a tool that aims at correctly identifying and separating jets stemming
from light quarks or gluons (light-flavour jets), and heavy quarks (c- or b-jets). The differences
between these jets reflect the properties of heavy-flavoured hadrons: a long lifetime, which leads
to a displaced (or secondary) vertex; and large impact parameters and mass. As a consequence,
an efficient and reliable track reconstruction and a precise measurement of vertices’ position are
pivotal elements for flavour tagging.

In this contribution, a quick description of tracking performance within jets is presented, as well
as a description of the main flavour tagging algorithms developed by the ATLAS [1] Collaboration.
Also, flavour tagging strategies for high transverse momentum (?) ) jet will be discussed.

2. Tracking within jets

The Inner Detector (ID), which is responsible for reconstructing particle trajectories, combines
information from three subdetectors that use different tracking technologies: pixel sensors, silicon
microstrip sensors and straw tubes. The first step of the ATLAS track reconstruction [2] consists
of grouping energy deposits from the interaction of the charged particles with the detector layers
into clusters of energies from raw measurements. However, the majority of charged particles within
highly energetic hadronic jets are concentrated in the jet core, as shown in the top-left plot of
Figure 1. In such a dense environment the average charged particle separation is comparable to
the granularity of individual sensor elements of the ID resulting in overlaps of charge deposits
from multiple particles. This leads to the occurrence of so-called merged clusters: energy clusters
created by charge deposits from multiple particles. Merged clusters affect the track reconstruction
algorithm performance and limit tracking efficiency. An efficient identification of merged clusters
is pivotal for an efficient charged particle reconstruction.

After cluster creation, a staged pattern recognition approach is used: a loose track candidate
search provides combinatorial track candidates to a stringent ambiguity-solver, which resolves any
ambiguity with respect to duplicated hits or hits wrongly attributed to tracks. The ambiguity-solver
uses an artificial Neural Network (NN) trained to identify merged clusters in order to maximise
tracking efficiency. Finally, a high-resolution fit is performed using all available information.

The plots in Figure 1 illustrate the loss of track reconstruction efficiency due to the wrong
identification of merged clusters. The track reconstruction efficiency varies according to the angular
distance between the charged particle and the jet axis. The closer the particles to the jet core, the
more significant the drop of efficiency is due to the high particle density. This effect is exacerbated at
high transverse momentum, where charged particles are more collimated. A decrease in efficiency
with production radius (defined as the radial distance from the beam axis) is also observed. This
is due to two different effects. Firstly, at large production radius the charged particles are created
beyond the first active layers of the Inner Detector, thus creating fewer clusters. Secondly, charged
particles are created very close to the next active layer of the ID, with high-?) and collimated. Thus,
leading to the creation of more merged clusters. The same effect is observed at all pseudorapidity
values ([), but the loss of efficiency is more dramatic at high [.
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Figure 1: The average number of primary tracks as a function of the angular distance from the jet axis
(top-left plot) and the track reconstruction efficiency as a function of the angular distance from the jet axis
(top-right plot), of ?) (bottom-left plot) and production radius (bottom-right plot) [2].

3. Flavour Tagging Algorithms

The differences between b-, c- or light-flavour jets is reflected in several physical quantities.
Specialised algorithms have been developed to analyse these discriminating quantities [3]: IP2D
and IP3D, that analyse track 30 and I0 significances and their correlations; SV1, that reconstructs
discriminating variables related to the presence of a single and inclusive secondary vertex; and
JetFitter, that reconstructs the complete b-hadron decay chain. The outputs from these complemen-
tary algorithms are then combined in high-level taggers, resulting in more versatile and powerful
tools. The MV2 algorithm – a Boosted Decision Tree (BDT) – has been widely used during Run
2, but recently the DL1 algorithm – based on a NN architecture – has been introduced. Also in
recent years, a new low-level impact parameter-based tagger has been implemented, which exploits
correlations between the tracks using a Recurrent Neural Network (RNN) approach: RNNIP [4].
High-level tagger variants, which also exploit the RNNIP output, have been made available and
DL1r is the currently recommended flavour tagging algorithm in ATLAS.

The use of a NN is preferable since it provides more flexibility with respect to a Boosted
Decision Tree. A BDT provides a single output discriminant and the training and testing of the
algorithm is obtained for a specific signal and background composition. A different background
composition would require a different training of the algorithm. This was the case for the different
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specializations of theMV2 algorithm for different c-quark background contaminations. Conversely,
a NN provides three output nodes, corresponding to the probability that the jet is stemming from a
light-, c- or b-quark: ?D , ?2 and ?1 respectively. The final discriminating variable DL1r, defined by
the Eq.1, is given by a log likelihood ratio (LLR) in which a free parameter – the charm fraction (2 5 )
– can be tuned in order to find the optimal trade-off between rejection of charm and light-flavour
jets. This can be done without the need to produce a new ad-hoc training, since the NN treats all
flavours equally.

DL1r = log
(

?1

?22 5 + ?D (1 − 2 5 )

)
(1)

This can also be extended to target the separation of c-jets from light-flavour and b-jets – i.e.
charm-tagging – by only defining a different signal and background in the LLR, see Eq.2. The
background composition is defined by a different free parameter: the bottom fraction (1 5 ).

DL1rc = log
(

?2

?11 5 + ?D (1 − 1 5 )

)
(2)

A new algorithm may replace RNNIP in the future: the Deep Impact Parameter Sets (DIPS)
[5]. This algorithm solves the same task as RNNIP, but does not require any specific order of the
input elements, which is better physically motivated since b-hadron decay products do not exhibit
any intrinsic sequential ordering.

4. Flavour Tagging Performance

The performance of the b-tagging algorithms with respect to the true flavour of jets is expressed
in terms of light-flavour jet and c-jet rejection as a function of b-jet efficiency. Figure 2 illustrates
the performance of the main high-level algorithms, both for light-flavour and c-jet rejection. In
both cases DL1r outperforms the other taggers, demonstrating that the introduction of the RNNIP
algorithm helped improving the flavour tagging performance. Background rejection, at a given
b-jet efficiency, decreases at high jet ?) . The training and testing phases of the flavour tagging
algorithms are performed on a mixture of CC̄ and / ′ (mass of 1000 GeV) simulated events [6]. Since
this ensures a training sample with high statistics in a broad ?) spectrum, it mitigates the decrease
of performance at high-?) , albeit still present.

The flavour tagging performance must be calibrated before being used in any physics analysis.
MC-to-data weights (Scale factors) – measured in both data and simulated CC̄ events – are applied
to Monte Carlo simulations to correct for any mismodelling of flavour tagging performance. The
calibration on b-jets is based on a likelihood-based method, as described in Refs. [7, 8].

5. Boosted regimes

At high momenta, the decay products of heavy resonances are highly collimated and are
merged into large radius (large-R) jets. Focusing on the decay to bottom quark pairs, the ability
to reconstruct Large-R jets and the decay products (sub-jets) is therefore crucial for improving the
sensitivity of dedicated searches. This is the case for a boosted Higgs boson decaying to pairs of
bottom quarks, which is of fundamental importance for the ATLAS physics program.
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Figure 2: Comparison of ROC (Receiver Operating Characteristic) curves for light-jet (left plot) and c-jet
rejection (right plot) as a function of b-jet efficiency for the MV2, DL1, and DL1r algorithms [9].
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Figure 3: Multi-jet rejection as a function of the � → 11̄ tagging efficiency (left plot) and ?) for large-R
jet (right plot). Performance of the algorithm is compared to DL1r and to two variants of MV2: with
variable-radius jets and fixed-radius jets [11].

The baseline sub-jet reconstruction algorithm in ATLAS utilises a fixed radius parameter (' =

0.2) and uses tracks as inputs. The fixed-radius approach is adequate as long as the hadronisation
products of the two b-quarks from the Higgs boson decay do not overlap. When that happens, the
efficiency of the sub-jet reconstruction algorithm severely drops and it is not able anymore to resolve
the large-R jet substructures [10]. An alternative approach, which uses a variable radius (VR) jet
algorithm, compensates for this inefficiency. This algorithm parametrizes the radius ' = d/?) as
a function of the jet ?) , where d is a constant, and imposes lower and upper cut-offs on the jet size.

This can be extended also to b-tagging with a new NN-based tagging algorithm, optimized
for the � → 11̄ topology, that combines the flavour information of up to three sub-jets within
the large-R jet [11]. This algorithm takes advantage of the tagging performance for individual
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sub-jets and their discriminant correlations, as well as the large-R jet kinematics. The resulting
discriminating variable (�-11) provides the ability to reject boosted top quark jets and jets arising
from multi-jet processes. The trade-off between the rejection of these two backgrounds is adjusted
via a free parameter, 5C>?, that defines the background composition in the LLR definition. The
performance of such an algorithm are shown in Figure 3.

6. Conclusions

A description of tracking and flavour tagging in ATLAS has been presented. Tracking con-
stitutes a pivotal element in flavour tagging and an efficient track reconstruction within jets is of
fundamental importance, despite its complexity due to the dense environment. The main flavour
tagging algorithms adopted by ATLAS have been introduced as well as their performance, explain-
ing the advantages in moving from a BDT to a NN-based approach. Moreover, calibration of flavour
tagging has bees introduced, as well as the use of flavour tagging techniques in boosted regimes.

References

[1] ATLAS Collaboration, The ATLAS Experiment at the CERN Large Hadron Collider, JINST
3 (2008) S08003.

[2] ATLAS Collaboration, Performance of the ATLAS track reconstruction algorithms in dense
environments in LHC Run 2., Eur. Phys. J. C 77, 673 (2017).

[3] ATLAS Collaboration, ATLAS b-jet identification performance and efficiency measurement
with CC̄ events in pp collisions at

√
B = 13 TeV, Eur. Phys. J. C 79, 970 (2019).

[4] ATLAS Collaboration, Identification of jets containing b-hadrons with recurrent neural net-
works at the ATLAS experiment, ATL-PHYS-PUB-2017-003.

[5] ATLAS Colaboration, Deep Sets based Neural Networks for Impact Parameter Flavour Tag-
ging in ATLAS, ATL-PHYS-PUB-2020-014.

[6] ATLAS Collaboration, Optimisation and performance studies of the ATLAS b-tagging algo-
rithms for the 2017-18 LHC run, ATL-PHYS-PUB-2017-013.

[7] ATLAS Collaboration, ATLAS b-jet identification performance and efficiency measurement
with CC̄ events in pp collisions at

√
B = 13 TeV, Eur. Phys. J. C 79 (2019) 970.

[8] ATLAS Collaboration, Measurements of b-jet tagging efficiency with the ATLAS detector
using CC̄ events at

√
B = 13 TeV, JHEP 08 (2018) 89.

[9] ATLAS Collaboration, Expected performance of the 2019 ATLAS b-taggers,
http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2019-005/.

[10] ATLAS Collaboration, Variable radius, exclusive-:) , and center-of-mass subjet reconstruc-
tion for Higgs (→ 11̄) tagging in ATLAS, ATL-PHYS-PUB-2017-010.

[11] ATLAS Collaboration, Identification of Boosted Higgs Bosons Decaying Into 11̄ with Neural
Networks and Variable Radius Subjets in ATLAS, ATL-PHYS-PUB-2020-019.

6

https://iopscience.iop.org/article/10.1088/1748-0221/3/08/S08003
https://iopscience.iop.org/article/10.1088/1748-0221/3/08/S08003
https://doi.org/10.1140/epjc/s10052-017-5225-7
https://doi.org/10.1140/epjc/s10052-019-7450-8
http://cds. cern.ch/record/2255226
http://cdsweb.cern.ch/record/2718948
https://cds.cern.ch/record/2273281
https://doi.org/10.1140/epjc/s10052-019-7450-8
https://doi.org/10.1007/JHEP08(2018)089
http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/FTAG-2019-005/
https://cds. cern.ch/record/2268678
http://cds.cern.ch/record/2724739

	Introduction
	Tracking within jets
	Flavour Tagging Algorithms
	Flavour Tagging Performance
	Boosted regimes
	Conclusions

